diff -r 0fec12eabad0 -r ae37b8fbf023 src/HOL/Limits.thy --- a/src/HOL/Limits.thy Thu Sep 12 17:17:52 2019 +0200 +++ b/src/HOL/Limits.thy Fri Sep 13 12:46:36 2019 +0100 @@ -2340,6 +2340,21 @@ by (auto intro!: exI[of _ L] decseq_ge) qed +lemma monoseq_convergent: + fixes X :: "nat \ real" + assumes X: "monoseq X" and B: "\i. \X i\ \ B" + obtains L where "X \ L" + using X unfolding monoseq_iff +proof + assume "incseq X" + show thesis + using abs_le_D1 [OF B] incseq_convergent [OF \incseq X\] that by meson +next + assume "decseq X" + show thesis + using decseq_convergent [OF \decseq X\] that + by (metis B abs_le_iff add.inverse_inverse neg_le_iff_le) +qed subsection \Power Sequences\