diff -r 383b0a1837a9 -r aecb5bf6f76f doc-src/TutorialI/CTL/PDL.thy --- a/doc-src/TutorialI/CTL/PDL.thy Mon Oct 09 17:40:47 2000 +0200 +++ b/doc-src/TutorialI/CTL/PDL.thy Mon Oct 09 19:20:55 2000 +0200 @@ -1,8 +1,8 @@ (*<*)theory PDL = Base:(*>*) -subsection{*Propositional dynmic logic---PDL*} +subsection{*Propositional dynamic logic---PDL*} -text{* +text{*\index{PDL|(} The formulae of PDL are built up from atomic propositions via the customary propositional connectives of negation and conjunction and the two temporal connectives @{text AX} and @{text EF}. Since formulae are essentially @@ -60,7 +60,6 @@ "mc(AX f) = {s. \t. (s,t) \ M \ t \ mc f}" "mc(EF f) = lfp(\T. mc f \ M^-1 ^^ T)" - text{*\noindent Only the equation for @{term EF} deserves some comments. Remember that the postfix @{text"^-1"} and the infix @{text"^^"} are predefined and denote the @@ -199,6 +198,7 @@ Show that the semantics for @{term EF} satisfies the following recursion equation: @{prop[display]"(s \ EF f) = (s \ f | s \ EN(EF f))"} \end{exercise} +\index{PDL|)} *} (*<*) theorem main: "mc f = {s. s \ f}";