diff -r 93f294ad42e6 -r b0ef3aae2bdb src/HOL/Library/Multiset_Order.thy --- a/src/HOL/Library/Multiset_Order.thy Wed May 10 08:20:53 2023 +0200 +++ b/src/HOL/Library/Multiset_Order.thy Wed May 10 08:56:32 2023 +0200 @@ -222,10 +222,9 @@ by (metis count_inI less_zeroE) -subsubsection \Properties of Preorders\ +subsubsection \Properties of Orders\ -lemma irreflp_on_multp\<^sub>H\<^sub>O[simp]: "irreflp_on B (multp\<^sub>H\<^sub>O R)" - by (simp add: irreflp_onI multp\<^sub>H\<^sub>O_def) +paragraph \Asymmetry\ text \The following lemma is a negative result stating that asymmetry of an arbitrary binary relation cannot be simply lifted to @{const multp\<^sub>H\<^sub>O}. It suffices to have four distinct values to @@ -303,6 +302,18 @@ shows "asymp (multp\<^sub>H\<^sub>O R)" using assms asymp_on_multp\<^sub>H\<^sub>O[of UNIV, simplified] by metis + +paragraph \Irreflexivity\ + +lemma irreflp_on_multp\<^sub>H\<^sub>O[simp]: "irreflp_on B (multp\<^sub>H\<^sub>O R)" + by (simp add: irreflp_onI multp\<^sub>H\<^sub>O_def) + + +paragraph \Transitivity\ + + +paragraph \Totality\ + lemma totalp_on_multp\<^sub>D\<^sub>M: "totalp_on A R \ (\M. M \ B \ set_mset M \ A) \ totalp_on B (multp\<^sub>D\<^sub>M R)" by (smt (verit, ccfv_SIG) count_inI in_mono multp\<^sub>H\<^sub>O_def multp\<^sub>H\<^sub>O_imp_multp\<^sub>D\<^sub>M not_less_iff_gr_or_eq @@ -319,6 +330,9 @@ lemma totalp_multp\<^sub>H\<^sub>O: "totalp R \ totalp (multp\<^sub>H\<^sub>O R)" by (rule totalp_on_multp\<^sub>H\<^sub>O[of UNIV R UNIV, simplified]) + +paragraph \Type Classes\ + context preorder begin