diff -r 2d1d426e00e4 -r b14b2cc4e25e src/HOL/ex/ImperativeQuicksort.thy --- a/src/HOL/ex/ImperativeQuicksort.thy Mon Mar 23 19:01:17 2009 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,637 +0,0 @@ -theory ImperativeQuicksort -imports "~~/src/HOL/Imperative_HOL/Imperative_HOL" Subarray Multiset Efficient_Nat -begin - -text {* We prove QuickSort correct in the Relational Calculus. *} - -definition swap :: "nat array \ nat \ nat \ unit Heap" -where - "swap arr i j = ( - do - x \ nth arr i; - y \ nth arr j; - upd i y arr; - upd j x arr; - return () - done)" - -lemma swap_permutes: - assumes "crel (swap a i j) h h' rs" - shows "multiset_of (get_array a h') - = multiset_of (get_array a h)" - using assms - unfolding swap_def - by (auto simp add: Heap.length_def multiset_of_swap dest: sym [of _ "h'"] elim!: crelE crel_nth crel_return crel_upd) - -function part1 :: "nat array \ nat \ nat \ nat \ nat Heap" -where - "part1 a left right p = ( - if (right \ left) then return right - else (do - v \ nth a left; - (if (v \ p) then (part1 a (left + 1) right p) - else (do swap a left right; - part1 a left (right - 1) p done)) - done))" -by pat_completeness auto - -termination -by (relation "measure (\(_,l,r,_). r - l )") auto - -declare part1.simps[simp del] - -lemma part_permutes: - assumes "crel (part1 a l r p) h h' rs" - shows "multiset_of (get_array a h') - = multiset_of (get_array a h)" - using assms -proof (induct a l r p arbitrary: h h' rs rule:part1.induct) - case (1 a l r p h h' rs) - thus ?case - unfolding part1.simps [of a l r p] - by (elim crelE crel_if crel_return crel_nth) (auto simp add: swap_permutes) -qed - -lemma part_returns_index_in_bounds: - assumes "crel (part1 a l r p) h h' rs" - assumes "l \ r" - shows "l \ rs \ rs \ r" -using assms -proof (induct a l r p arbitrary: h h' rs rule:part1.induct) - case (1 a l r p h h' rs) - note cr = `crel (part1 a l r p) h h' rs` - show ?case - proof (cases "r \ l") - case True (* Terminating case *) - with cr `l \ r` show ?thesis - unfolding part1.simps[of a l r p] - by (elim crelE crel_if crel_return crel_nth) auto - next - case False (* recursive case *) - note rec_condition = this - let ?v = "get_array a h ! l" - show ?thesis - proof (cases "?v \ p") - case True - with cr False - have rec1: "crel (part1 a (l + 1) r p) h h' rs" - unfolding part1.simps[of a l r p] - by (elim crelE crel_nth crel_if crel_return) auto - from rec_condition have "l + 1 \ r" by arith - from 1(1)[OF rec_condition True rec1 `l + 1 \ r`] - show ?thesis by simp - next - case False - with rec_condition cr - obtain h1 where swp: "crel (swap a l r) h h1 ()" - and rec2: "crel (part1 a l (r - 1) p) h1 h' rs" - unfolding part1.simps[of a l r p] - by (elim crelE crel_nth crel_if crel_return) auto - from rec_condition have "l \ r - 1" by arith - from 1(2) [OF rec_condition False rec2 `l \ r - 1`] show ?thesis by fastsimp - qed - qed -qed - -lemma part_length_remains: - assumes "crel (part1 a l r p) h h' rs" - shows "Heap.length a h = Heap.length a h'" -using assms -proof (induct a l r p arbitrary: h h' rs rule:part1.induct) - case (1 a l r p h h' rs) - note cr = `crel (part1 a l r p) h h' rs` - - show ?case - proof (cases "r \ l") - case True (* Terminating case *) - with cr show ?thesis - unfolding part1.simps[of a l r p] - by (elim crelE crel_if crel_return crel_nth) auto - next - case False (* recursive case *) - with cr 1 show ?thesis - unfolding part1.simps [of a l r p] swap_def - by (auto elim!: crelE crel_if crel_nth crel_return crel_upd) fastsimp - qed -qed - -lemma part_outer_remains: - assumes "crel (part1 a l r p) h h' rs" - shows "\i. i < l \ r < i \ get_array (a::nat array) h ! i = get_array a h' ! i" - using assms -proof (induct a l r p arbitrary: h h' rs rule:part1.induct) - case (1 a l r p h h' rs) - note cr = `crel (part1 a l r p) h h' rs` - - show ?case - proof (cases "r \ l") - case True (* Terminating case *) - with cr show ?thesis - unfolding part1.simps[of a l r p] - by (elim crelE crel_if crel_return crel_nth) auto - next - case False (* recursive case *) - note rec_condition = this - let ?v = "get_array a h ! l" - show ?thesis - proof (cases "?v \ p") - case True - with cr False - have rec1: "crel (part1 a (l + 1) r p) h h' rs" - unfolding part1.simps[of a l r p] - by (elim crelE crel_nth crel_if crel_return) auto - from 1(1)[OF rec_condition True rec1] - show ?thesis by fastsimp - next - case False - with rec_condition cr - obtain h1 where swp: "crel (swap a l r) h h1 ()" - and rec2: "crel (part1 a l (r - 1) p) h1 h' rs" - unfolding part1.simps[of a l r p] - by (elim crelE crel_nth crel_if crel_return) auto - from swp rec_condition have - "\i. i < l \ r < i \ get_array a h ! i = get_array a h1 ! i" - unfolding swap_def - by (elim crelE crel_nth crel_upd crel_return) auto - with 1(2) [OF rec_condition False rec2] show ?thesis by fastsimp - qed - qed -qed - - -lemma part_partitions: - assumes "crel (part1 a l r p) h h' rs" - shows "(\i. l \ i \ i < rs \ get_array (a::nat array) h' ! i \ p) - \ (\i. rs < i \ i \ r \ get_array a h' ! i \ p)" - using assms -proof (induct a l r p arbitrary: h h' rs rule:part1.induct) - case (1 a l r p h h' rs) - note cr = `crel (part1 a l r p) h h' rs` - - show ?case - proof (cases "r \ l") - case True (* Terminating case *) - with cr have "rs = r" - unfolding part1.simps[of a l r p] - by (elim crelE crel_if crel_return crel_nth) auto - with True - show ?thesis by auto - next - case False (* recursive case *) - note lr = this - let ?v = "get_array a h ! l" - show ?thesis - proof (cases "?v \ p") - case True - with lr cr - have rec1: "crel (part1 a (l + 1) r p) h h' rs" - unfolding part1.simps[of a l r p] - by (elim crelE crel_nth crel_if crel_return) auto - from True part_outer_remains[OF rec1] have a_l: "get_array a h' ! l \ p" - by fastsimp - have "\i. (l \ i = (l = i \ Suc l \ i))" by arith - with 1(1)[OF False True rec1] a_l show ?thesis - by auto - next - case False - with lr cr - obtain h1 where swp: "crel (swap a l r) h h1 ()" - and rec2: "crel (part1 a l (r - 1) p) h1 h' rs" - unfolding part1.simps[of a l r p] - by (elim crelE crel_nth crel_if crel_return) auto - from swp False have "get_array a h1 ! r \ p" - unfolding swap_def - by (auto simp add: Heap.length_def elim!: crelE crel_nth crel_upd crel_return) - with part_outer_remains [OF rec2] lr have a_r: "get_array a h' ! r \ p" - by fastsimp - have "\i. (i \ r = (i = r \ i \ r - 1))" by arith - with 1(2)[OF lr False rec2] a_r show ?thesis - by auto - qed - qed -qed - - -fun partition :: "nat array \ nat \ nat \ nat Heap" -where - "partition a left right = (do - pivot \ nth a right; - middle \ part1 a left (right - 1) pivot; - v \ nth a middle; - m \ return (if (v \ pivot) then (middle + 1) else middle); - swap a m right; - return m - done)" - -declare partition.simps[simp del] - -lemma partition_permutes: - assumes "crel (partition a l r) h h' rs" - shows "multiset_of (get_array a h') - = multiset_of (get_array a h)" -proof - - from assms part_permutes swap_permutes show ?thesis - unfolding partition.simps - by (elim crelE crel_return crel_nth crel_if crel_upd) auto -qed - -lemma partition_length_remains: - assumes "crel (partition a l r) h h' rs" - shows "Heap.length a h = Heap.length a h'" -proof - - from assms part_length_remains show ?thesis - unfolding partition.simps swap_def - by (elim crelE crel_return crel_nth crel_if crel_upd) auto -qed - -lemma partition_outer_remains: - assumes "crel (partition a l r) h h' rs" - assumes "l < r" - shows "\i. i < l \ r < i \ get_array (a::nat array) h ! i = get_array a h' ! i" -proof - - from assms part_outer_remains part_returns_index_in_bounds show ?thesis - unfolding partition.simps swap_def - by (elim crelE crel_return crel_nth crel_if crel_upd) fastsimp -qed - -lemma partition_returns_index_in_bounds: - assumes crel: "crel (partition a l r) h h' rs" - assumes "l < r" - shows "l \ rs \ rs \ r" -proof - - from crel obtain middle h'' p where part: "crel (part1 a l (r - 1) p) h h'' middle" - and rs_equals: "rs = (if get_array a h'' ! middle \ get_array a h ! r then middle + 1 - else middle)" - unfolding partition.simps - by (elim crelE crel_return crel_nth crel_if crel_upd) simp - from `l < r` have "l \ r - 1" by arith - from part_returns_index_in_bounds[OF part this] rs_equals `l < r` show ?thesis by auto -qed - -lemma partition_partitions: - assumes crel: "crel (partition a l r) h h' rs" - assumes "l < r" - shows "(\i. l \ i \ i < rs \ get_array (a::nat array) h' ! i \ get_array a h' ! rs) \ - (\i. rs < i \ i \ r \ get_array a h' ! rs \ get_array a h' ! i)" -proof - - let ?pivot = "get_array a h ! r" - from crel obtain middle h1 where part: "crel (part1 a l (r - 1) ?pivot) h h1 middle" - and swap: "crel (swap a rs r) h1 h' ()" - and rs_equals: "rs = (if get_array a h1 ! middle \ ?pivot then middle + 1 - else middle)" - unfolding partition.simps - by (elim crelE crel_return crel_nth crel_if crel_upd) simp - from swap have h'_def: "h' = Heap.upd a r (get_array a h1 ! rs) - (Heap.upd a rs (get_array a h1 ! r) h1)" - unfolding swap_def - by (elim crelE crel_return crel_nth crel_upd) simp - from swap have in_bounds: "r < Heap.length a h1 \ rs < Heap.length a h1" - unfolding swap_def - by (elim crelE crel_return crel_nth crel_upd) simp - from swap have swap_length_remains: "Heap.length a h1 = Heap.length a h'" - unfolding swap_def by (elim crelE crel_return crel_nth crel_upd) auto - from `l < r` have "l \ r - 1" by simp - note middle_in_bounds = part_returns_index_in_bounds[OF part this] - from part_outer_remains[OF part] `l < r` - have "get_array a h ! r = get_array a h1 ! r" - by fastsimp - with swap - have right_remains: "get_array a h ! r = get_array a h' ! rs" - unfolding swap_def - by (auto simp add: Heap.length_def elim!: crelE crel_return crel_nth crel_upd) (cases "r = rs", auto) - from part_partitions [OF part] - show ?thesis - proof (cases "get_array a h1 ! middle \ ?pivot") - case True - with rs_equals have rs_equals: "rs = middle + 1" by simp - { - fix i - assume i_is_left: "l \ i \ i < rs" - with swap_length_remains in_bounds middle_in_bounds rs_equals `l < r` - have i_props: "i < Heap.length a h'" "i \ r" "i \ rs" by auto - from i_is_left rs_equals have "l \ i \ i < middle \ i = middle" by arith - with part_partitions[OF part] right_remains True - have "get_array a h1 ! i \ get_array a h' ! rs" by fastsimp - with i_props h'_def in_bounds have "get_array a h' ! i \ get_array a h' ! rs" - unfolding Heap.upd_def Heap.length_def by simp - } - moreover - { - fix i - assume "rs < i \ i \ r" - - hence "(rs < i \ i \ r - 1) \ (rs < i \ i = r)" by arith - hence "get_array a h' ! rs \ get_array a h' ! i" - proof - assume i_is: "rs < i \ i \ r - 1" - with swap_length_remains in_bounds middle_in_bounds rs_equals - have i_props: "i < Heap.length a h'" "i \ r" "i \ rs" by auto - from part_partitions[OF part] rs_equals right_remains i_is - have "get_array a h' ! rs \ get_array a h1 ! i" - by fastsimp - with i_props h'_def show ?thesis by fastsimp - next - assume i_is: "rs < i \ i = r" - with rs_equals have "Suc middle \ r" by arith - with middle_in_bounds `l < r` have "Suc middle \ r - 1" by arith - with part_partitions[OF part] right_remains - have "get_array a h' ! rs \ get_array a h1 ! (Suc middle)" - by fastsimp - with i_is True rs_equals right_remains h'_def - show ?thesis using in_bounds - unfolding Heap.upd_def Heap.length_def - by auto - qed - } - ultimately show ?thesis by auto - next - case False - with rs_equals have rs_equals: "middle = rs" by simp - { - fix i - assume i_is_left: "l \ i \ i < rs" - with swap_length_remains in_bounds middle_in_bounds rs_equals - have i_props: "i < Heap.length a h'" "i \ r" "i \ rs" by auto - from part_partitions[OF part] rs_equals right_remains i_is_left - have "get_array a h1 ! i \ get_array a h' ! rs" by fastsimp - with i_props h'_def have "get_array a h' ! i \ get_array a h' ! rs" - unfolding Heap.upd_def by simp - } - moreover - { - fix i - assume "rs < i \ i \ r" - hence "(rs < i \ i \ r - 1) \ i = r" by arith - hence "get_array a h' ! rs \ get_array a h' ! i" - proof - assume i_is: "rs < i \ i \ r - 1" - with swap_length_remains in_bounds middle_in_bounds rs_equals - have i_props: "i < Heap.length a h'" "i \ r" "i \ rs" by auto - from part_partitions[OF part] rs_equals right_remains i_is - have "get_array a h' ! rs \ get_array a h1 ! i" - by fastsimp - with i_props h'_def show ?thesis by fastsimp - next - assume i_is: "i = r" - from i_is False rs_equals right_remains h'_def - show ?thesis using in_bounds - unfolding Heap.upd_def Heap.length_def - by auto - qed - } - ultimately - show ?thesis by auto - qed -qed - - -function quicksort :: "nat array \ nat \ nat \ unit Heap" -where - "quicksort arr left right = - (if (right > left) then - do - pivotNewIndex \ partition arr left right; - pivotNewIndex \ assert (\x. left \ x \ x \ right) pivotNewIndex; - quicksort arr left (pivotNewIndex - 1); - quicksort arr (pivotNewIndex + 1) right - done - else return ())" -by pat_completeness auto - -(* For termination, we must show that the pivotNewIndex is between left and right *) -termination -by (relation "measure (\(a, l, r). (r - l))") auto - -declare quicksort.simps[simp del] - - -lemma quicksort_permutes: - assumes "crel (quicksort a l r) h h' rs" - shows "multiset_of (get_array a h') - = multiset_of (get_array a h)" - using assms -proof (induct a l r arbitrary: h h' rs rule: quicksort.induct) - case (1 a l r h h' rs) - with partition_permutes show ?case - unfolding quicksort.simps [of a l r] - by (elim crel_if crelE crel_assert crel_return) auto -qed - -lemma length_remains: - assumes "crel (quicksort a l r) h h' rs" - shows "Heap.length a h = Heap.length a h'" -using assms -proof (induct a l r arbitrary: h h' rs rule: quicksort.induct) - case (1 a l r h h' rs) - with partition_length_remains show ?case - unfolding quicksort.simps [of a l r] - by (elim crel_if crelE crel_assert crel_return) auto -qed - -lemma quicksort_outer_remains: - assumes "crel (quicksort a l r) h h' rs" - shows "\i. i < l \ r < i \ get_array (a::nat array) h ! i = get_array a h' ! i" - using assms -proof (induct a l r arbitrary: h h' rs rule: quicksort.induct) - case (1 a l r h h' rs) - note cr = `crel (quicksort a l r) h h' rs` - thus ?case - proof (cases "r > l") - case False - with cr have "h' = h" - unfolding quicksort.simps [of a l r] - by (elim crel_if crel_return) auto - thus ?thesis by simp - next - case True - { - fix h1 h2 p ret1 ret2 i - assume part: "crel (partition a l r) h h1 p" - assume qs1: "crel (quicksort a l (p - 1)) h1 h2 ret1" - assume qs2: "crel (quicksort a (p + 1) r) h2 h' ret2" - assume pivot: "l \ p \ p \ r" - assume i_outer: "i < l \ r < i" - from partition_outer_remains [OF part True] i_outer - have "get_array a h !i = get_array a h1 ! i" by fastsimp - moreover - with 1(1) [OF True pivot qs1] pivot i_outer - have "get_array a h1 ! i = get_array a h2 ! i" by auto - moreover - with qs2 1(2) [of p h2 h' ret2] True pivot i_outer - have "get_array a h2 ! i = get_array a h' ! i" by auto - ultimately have "get_array a h ! i= get_array a h' ! i" by simp - } - with cr show ?thesis - unfolding quicksort.simps [of a l r] - by (elim crel_if crelE crel_assert crel_return) auto - qed -qed - -lemma quicksort_is_skip: - assumes "crel (quicksort a l r) h h' rs" - shows "r \ l \ h = h'" - using assms - unfolding quicksort.simps [of a l r] - by (elim crel_if crel_return) auto - -lemma quicksort_sorts: - assumes "crel (quicksort a l r) h h' rs" - assumes l_r_length: "l < Heap.length a h" "r < Heap.length a h" - shows "sorted (subarray l (r + 1) a h')" - using assms -proof (induct a l r arbitrary: h h' rs rule: quicksort.induct) - case (1 a l r h h' rs) - note cr = `crel (quicksort a l r) h h' rs` - thus ?case - proof (cases "r > l") - case False - hence "l \ r + 1 \ l = r" by arith - with length_remains[OF cr] 1(5) show ?thesis - by (auto simp add: subarray_Nil subarray_single) - next - case True - { - fix h1 h2 p - assume part: "crel (partition a l r) h h1 p" - assume qs1: "crel (quicksort a l (p - 1)) h1 h2 ()" - assume qs2: "crel (quicksort a (p + 1) r) h2 h' ()" - from partition_returns_index_in_bounds [OF part True] - have pivot: "l\ p \ p \ r" . - note length_remains = length_remains[OF qs2] length_remains[OF qs1] partition_length_remains[OF part] - from quicksort_outer_remains [OF qs2] quicksort_outer_remains [OF qs1] pivot quicksort_is_skip[OF qs1] - have pivot_unchanged: "get_array a h1 ! p = get_array a h' ! p" by (cases p, auto) - (*-- First of all, by induction hypothesis both sublists are sorted. *) - from 1(1)[OF True pivot qs1] length_remains pivot 1(5) - have IH1: "sorted (subarray l p a h2)" by (cases p, auto simp add: subarray_Nil) - from quicksort_outer_remains [OF qs2] length_remains - have left_subarray_remains: "subarray l p a h2 = subarray l p a h'" - by (simp add: subarray_eq_samelength_iff) - with IH1 have IH1': "sorted (subarray l p a h')" by simp - from 1(2)[OF True pivot qs2] pivot 1(5) length_remains - have IH2: "sorted (subarray (p + 1) (r + 1) a h')" - by (cases "Suc p \ r", auto simp add: subarray_Nil) - (* -- Secondly, both sublists remain partitioned. *) - from partition_partitions[OF part True] - have part_conds1: "\j. j \ set (subarray l p a h1) \ j \ get_array a h1 ! p " - and part_conds2: "\j. j \ set (subarray (p + 1) (r + 1) a h1) \ get_array a h1 ! p \ j" - by (auto simp add: all_in_set_subarray_conv) - from quicksort_outer_remains [OF qs1] quicksort_permutes [OF qs1] True - length_remains 1(5) pivot multiset_of_sublist [of l p "get_array a h1" "get_array a h2"] - have multiset_partconds1: "multiset_of (subarray l p a h2) = multiset_of (subarray l p a h1)" - unfolding Heap.length_def subarray_def by (cases p, auto) - with left_subarray_remains part_conds1 pivot_unchanged - have part_conds2': "\j. j \ set (subarray l p a h') \ j \ get_array a h' ! p" - by (simp, subst set_of_multiset_of[symmetric], simp) - (* -- These steps are the analogous for the right sublist \ *) - from quicksort_outer_remains [OF qs1] length_remains - have right_subarray_remains: "subarray (p + 1) (r + 1) a h1 = subarray (p + 1) (r + 1) a h2" - by (auto simp add: subarray_eq_samelength_iff) - from quicksort_outer_remains [OF qs2] quicksort_permutes [OF qs2] True - length_remains 1(5) pivot multiset_of_sublist [of "p + 1" "r + 1" "get_array a h2" "get_array a h'"] - have multiset_partconds2: "multiset_of (subarray (p + 1) (r + 1) a h') = multiset_of (subarray (p + 1) (r + 1) a h2)" - unfolding Heap.length_def subarray_def by auto - with right_subarray_remains part_conds2 pivot_unchanged - have part_conds1': "\j. j \ set (subarray (p + 1) (r + 1) a h') \ get_array a h' ! p \ j" - by (simp, subst set_of_multiset_of[symmetric], simp) - (* -- Thirdly and finally, we show that the array is sorted - following from the facts above. *) - from True pivot 1(5) length_remains have "subarray l (r + 1) a h' = subarray l p a h' @ [get_array a h' ! p] @ subarray (p + 1) (r + 1) a h'" - by (simp add: subarray_nth_array_Cons, cases "l < p") (auto simp add: subarray_append subarray_Nil) - with IH1' IH2 part_conds1' part_conds2' pivot have ?thesis - unfolding subarray_def - apply (auto simp add: sorted_append sorted_Cons all_in_set_sublist'_conv) - by (auto simp add: set_sublist' dest: le_trans [of _ "get_array a h' ! p"]) - } - with True cr show ?thesis - unfolding quicksort.simps [of a l r] - by (elim crel_if crel_return crelE crel_assert) auto - qed -qed - - -lemma quicksort_is_sort: - assumes crel: "crel (quicksort a 0 (Heap.length a h - 1)) h h' rs" - shows "get_array a h' = sort (get_array a h)" -proof (cases "get_array a h = []") - case True - with quicksort_is_skip[OF crel] show ?thesis - unfolding Heap.length_def by simp -next - case False - from quicksort_sorts [OF crel] False have "sorted (sublist' 0 (List.length (get_array a h)) (get_array a h'))" - unfolding Heap.length_def subarray_def by auto - with length_remains[OF crel] have "sorted (get_array a h')" - unfolding Heap.length_def by simp - with quicksort_permutes [OF crel] properties_for_sort show ?thesis by fastsimp -qed - -subsection {* No Errors in quicksort *} -text {* We have proved that quicksort sorts (if no exceptions occur). -We will now show that exceptions do not occur. *} - -lemma noError_part1: - assumes "l < Heap.length a h" "r < Heap.length a h" - shows "noError (part1 a l r p) h" - using assms -proof (induct a l r p arbitrary: h rule: part1.induct) - case (1 a l r p) - thus ?case - unfolding part1.simps [of a l r] swap_def - by (auto intro!: noError_if noErrorI noError_return noError_nth noError_upd elim!: crelE crel_upd crel_nth crel_return) -qed - -lemma noError_partition: - assumes "l < r" "l < Heap.length a h" "r < Heap.length a h" - shows "noError (partition a l r) h" -using assms -unfolding partition.simps swap_def -apply (auto intro!: noError_if noErrorI noError_return noError_nth noError_upd noError_part1 elim!: crelE crel_upd crel_nth crel_return) -apply (frule part_length_remains) -apply (frule part_returns_index_in_bounds) -apply auto -apply (frule part_length_remains) -apply (frule part_returns_index_in_bounds) -apply auto -apply (frule part_length_remains) -apply auto -done - -lemma noError_quicksort: - assumes "l < Heap.length a h" "r < Heap.length a h" - shows "noError (quicksort a l r) h" -using assms -proof (induct a l r arbitrary: h rule: quicksort.induct) - case (1 a l ri h) - thus ?case - unfolding quicksort.simps [of a l ri] - apply (auto intro!: noError_if noErrorI noError_return noError_nth noError_upd noError_assert noError_partition) - apply (frule partition_returns_index_in_bounds) - apply auto - apply (frule partition_returns_index_in_bounds) - apply auto - apply (auto elim!: crel_assert dest!: partition_length_remains length_remains) - apply (subgoal_tac "Suc r \ ri \ r = ri") - apply (erule disjE) - apply auto - unfolding quicksort.simps [of a "Suc ri" ri] - apply (auto intro!: noError_if noError_return) - done -qed - - -subsection {* Example *} - -definition "qsort a = do - k \ length a; - quicksort a 0 (k - 1); - return a - done" - -ML {* @{code qsort} (Array.fromList [42, 2, 3, 5, 0, 1705, 8, 3, 15]) () *} - -export_code qsort in SML_imp module_name QSort -export_code qsort in OCaml module_name QSort file - -export_code qsort in OCaml_imp module_name QSort file - -export_code qsort in Haskell module_name QSort file - - -end \ No newline at end of file