diff -r fa7d27ef7e59 -r b21fce6d146a src/HOL/HoareParallel/RG_Examples.thy --- a/src/HOL/HoareParallel/RG_Examples.thy Wed Jul 14 10:25:03 2004 +0200 +++ b/src/HOL/HoareParallel/RG_Examples.thy Wed Jul 14 10:25:21 2004 +0200 @@ -187,7 +187,7 @@ subsubsection {* Parameterized *} -lemma Example2_lemma1: "j (\i b j = 0 " +lemma Example2_lemma1: "j (\i::nat b j = 0 " apply(induct n) apply simp_all apply(force simp add: less_Suc_eq) @@ -204,13 +204,13 @@ apply arith done -lemma Example2_lemma2_aux2: "j\ s \ (\ii s \ (\i::natij \ Suc (\i< n. b i)=(\i< n. (b (j := Suc 0)) i)" + "!!b. \j \ Suc (\i::nat< n. b i)=(\i< n. (b (j := Suc 0)) i)" apply(frule_tac b="(b (j:=(Suc 0)))" in Example2_lemma2_aux) apply(erule_tac t="setsum (b(j := (Suc 0))) {..n(}" in ssubst) apply(frule_tac b=b in Example2_lemma2_aux) @@ -225,10 +225,10 @@ apply simp_all done -lemma Example2_lemma2_Suc0: "\j \ Suc (\i< n. b i)=(\i< n. (b (j:=Suc 0)) i)" +lemma Example2_lemma2_Suc0: "\j \ Suc (\i::nat< n. b i)=(\i< n. (b (j:=Suc 0)) i)" by(simp add:Example2_lemma2) -lemma Example2_lemma3: "\i< n. b i = 1 \ (\ii< n. b i = 1 \ (\i::nat