diff -r 8627da9246da -r b247e62520ec doc-src/TutorialI/Rules/Primes.thy --- a/doc-src/TutorialI/Rules/Primes.thy Mon Oct 23 17:37:03 2000 +0200 +++ b/doc-src/TutorialI/Rules/Primes.thy Mon Oct 23 17:37:20 2000 +0200 @@ -2,9 +2,9 @@ theory Primes = Main: consts - gcd :: "nat*nat=>nat" (*Euclid's algorithm *) + gcd :: "nat*nat \ nat" (*Euclid's algorithm *) -recdef gcd "measure ((\(m,n).n) ::nat*nat=>nat)" +recdef gcd "measure ((\(m,n).n) ::nat*nat \ nat)" "gcd (m, n) = (if n=0 then m else gcd(n, m mod n))" @@ -89,7 +89,7 @@ constdefs - is_gcd :: "[nat,nat,nat]=>bool" (*gcd as a relation*) + is_gcd :: "[nat,nat,nat] \ bool" (*gcd as a relation*) "is_gcd p m n == p dvd m \ p dvd n \ (ALL d. d dvd m \ d dvd n \ d dvd p)"