diff -r 4b93e949ac33 -r b2d23672b003 src/HOL/Hyperreal/HyperDef.thy --- a/src/HOL/Hyperreal/HyperDef.thy Wed Dec 13 00:02:53 2006 +0100 +++ b/src/HOL/Hyperreal/HyperDef.thy Wed Dec 13 00:07:13 2006 +0100 @@ -198,38 +198,6 @@ subsection{*Properties of @{term starrel}*} -text{*Proving that @{term starrel} is an equivalence relation*} -(* -lemma starrel_iff: "((X,Y) \ starrel) = ({n. X n = Y n} \ FreeUltrafilterNat)" -by (rule StarDef.starrel_iff) - -lemma starrel_refl: "(x,x) \ starrel" -by (simp add: starrel_def) - -lemma starrel_sym [rule_format (no_asm)]: "(x,y) \ starrel --> (y,x) \ starrel" -by (simp add: starrel_def eq_commute) - -lemma starrel_trans: - "[|(x,y) \ starrel; (y,z) \ starrel|] ==> (x,z) \ starrel" -by (simp add: starrel_def, ultra) - -lemma equiv_starrel: "equiv UNIV starrel" -by (rule StarDef.equiv_starrel) - -lemmas equiv_starrel_iff = - eq_equiv_class_iff [OF equiv_starrel UNIV_I UNIV_I, simp] - -lemmas eq_starrelD = eq_equiv_class [OF _ equiv_starrel] - -lemma hypreal_empty_not_mem [simp]: "{} \ star" -apply (simp add: star_def) -apply (auto elim!: quotientE equalityCE) -done - -lemma Rep_hypreal_nonempty [simp]: "Rep_star x \ {}" -by (insert Rep_star [of x], auto) -*) - lemma lemma_starrel_refl [simp]: "x \ starrel `` {x}" by (simp add: starrel_def) @@ -242,7 +210,7 @@ subsection{*@{term hypreal_of_real}: the Injection from @{typ real} to @{typ hypreal}*} -lemma inj_hypreal_of_real: "inj(hypreal_of_real)" +lemma inj_star_of: "inj star_of" by (rule inj_onI, simp) lemma mem_Rep_star_iff: "(X \ Rep_star x) = (x = star_n X)"