diff -r 6a4d5ca6d2e5 -r b3e8d5ec721d src/HOL/Library/SetsAndFunctions.thy --- a/src/HOL/Library/SetsAndFunctions.thy Wed May 07 10:59:23 2008 +0200 +++ b/src/HOL/Library/SetsAndFunctions.thy Wed May 07 10:59:24 2008 +0200 @@ -17,15 +17,9 @@ subsection {* Basic definitions *} -instantiation set :: (plus) plus -begin - definition - set_plus: "A + B == {c. EX a:A. EX b:B. c = a + b}" - -instance .. - -end + set_plus :: "('a::plus) set => 'a set => 'a set" (infixl "\" 65) where + "A \ B == {c. EX a:A. EX b:B. c = a + b}" instantiation "fun" :: (type, plus) plus begin @@ -37,15 +31,9 @@ end -instantiation set :: (times) times -begin - definition - set_times:"A * B == {c. EX a:A. EX b:B. c = a * b}" - -instance .. - -end + set_times :: "('a::times) set => 'a set => 'a set" (infixl "\" 70) where + "A \ B == {c. EX a:A. EX b:B. c = a * b}" instantiation "fun" :: (type, times) times begin @@ -57,36 +45,6 @@ end -instantiation "fun" :: (type, minus) minus -begin - -definition - func_diff: "f - g == %x. f x - g x" - -instance .. - -end - -instantiation "fun" :: (type, uminus) uminus -begin - -definition - func_minus: "- f == (%x. - f x)" - -instance .. - -end - - -instantiation set :: (zero) zero -begin - -definition - set_zero: "0::('a::zero)set == {0}" - -instance .. - -end instantiation "fun" :: (type, zero) zero begin @@ -98,16 +56,6 @@ end -instantiation set :: (one) one -begin - -definition - set_one: "1::('a::one)set == {1}" - -instance .. - -end - instantiation "fun" :: (type, one) one begin @@ -138,8 +86,8 @@ instance "fun" :: (type,ab_group_add)ab_group_add apply default - apply (simp add: func_minus func_plus func_zero) - apply (simp add: func_minus func_plus func_diff diff_minus) + apply (simp add: fun_Compl_def func_plus func_zero) + apply (simp add: fun_Compl_def func_plus fun_diff_def diff_minus) done instance "fun" :: (type,semigroup_mult)semigroup_mult @@ -154,52 +102,50 @@ instance "fun" :: (type,comm_ring_1)comm_ring_1 apply default - apply (auto simp add: func_plus func_times func_minus func_diff ext + apply (auto simp add: func_plus func_times fun_Compl_def fun_diff_def ext func_one func_zero ring_simps) apply (drule fun_cong) apply simp done -instance set :: (semigroup_add)semigroup_add +interpretation set_semigroup_add: semigroup_add ["op \ :: ('a::semigroup_add) set => 'a set => 'a set"] apply default - apply (unfold set_plus) + apply (unfold set_plus_def) apply (force simp add: add_assoc) done -instance set :: (semigroup_mult)semigroup_mult +interpretation set_semigroup_mult: semigroup_mult ["op \ :: ('a::semigroup_mult) set => 'a set => 'a set"] apply default - apply (unfold set_times) + apply (unfold set_times_def) apply (force simp add: mult_assoc) done -instance set :: (comm_monoid_add)comm_monoid_add +interpretation set_comm_monoid_add: comm_monoid_add ["{0}" "op \ :: ('a::comm_monoid_add) set => 'a set => 'a set"] apply default - apply (unfold set_plus) + apply (unfold set_plus_def) apply (force simp add: add_ac) - apply (unfold set_zero) apply force done -instance set :: (comm_monoid_mult)comm_monoid_mult +interpretation set_comm_monoid_mult: comm_monoid_mult ["{1}" "op \ :: ('a::comm_monoid_mult) set => 'a set => 'a set"] apply default - apply (unfold set_times) + apply (unfold set_times_def) apply (force simp add: mult_ac) - apply (unfold set_one) apply force done subsection {* Basic properties *} -lemma set_plus_intro [intro]: "a : C ==> b : D ==> a + b : C + D" - by (auto simp add: set_plus) +lemma set_plus_intro [intro]: "a : C ==> b : D ==> a + b : C \ D" + by (auto simp add: set_plus_def) lemma set_plus_intro2 [intro]: "b : C ==> a + b : a +o C" by (auto simp add: elt_set_plus_def) -lemma set_plus_rearrange: "((a::'a::comm_monoid_add) +o C) + - (b +o D) = (a + b) +o (C + D)" - apply (auto simp add: elt_set_plus_def set_plus add_ac) +lemma set_plus_rearrange: "((a::'a::comm_monoid_add) +o C) \ + (b +o D) = (a + b) +o (C \ D)" + apply (auto simp add: elt_set_plus_def set_plus_def add_ac) apply (rule_tac x = "ba + bb" in exI) apply (auto simp add: add_ac) apply (rule_tac x = "aa + a" in exI) @@ -210,9 +156,9 @@ (a + b) +o C" by (auto simp add: elt_set_plus_def add_assoc) -lemma set_plus_rearrange3: "((a::'a::semigroup_add) +o B) + C = - a +o (B + C)" - apply (auto simp add: elt_set_plus_def set_plus) +lemma set_plus_rearrange3: "((a::'a::semigroup_add) +o B) \ C = + a +o (B \ C)" + apply (auto simp add: elt_set_plus_def set_plus_def) apply (blast intro: add_ac) apply (rule_tac x = "a + aa" in exI) apply (rule conjI) @@ -222,9 +168,9 @@ apply (auto simp add: add_ac) done -theorem set_plus_rearrange4: "C + ((a::'a::comm_monoid_add) +o D) = - a +o (C + D)" - apply (auto intro!: subsetI simp add: elt_set_plus_def set_plus add_ac) +theorem set_plus_rearrange4: "C \ ((a::'a::comm_monoid_add) +o D) = + a +o (C \ D)" + apply (auto intro!: subsetI simp add: elt_set_plus_def set_plus_def add_ac) apply (rule_tac x = "aa + ba" in exI) apply (auto simp add: add_ac) done @@ -236,17 +182,17 @@ by (auto simp add: elt_set_plus_def) lemma set_plus_mono2 [intro]: "(C::('a::plus) set) <= D ==> E <= F ==> - C + E <= D + F" - by (auto simp add: set_plus) + C \ E <= D \ F" + by (auto simp add: set_plus_def) -lemma set_plus_mono3 [intro]: "a : C ==> a +o D <= C + D" - by (auto simp add: elt_set_plus_def set_plus) +lemma set_plus_mono3 [intro]: "a : C ==> a +o D <= C \ D" + by (auto simp add: elt_set_plus_def set_plus_def) lemma set_plus_mono4 [intro]: "(a::'a::comm_monoid_add) : C ==> - a +o D <= D + C" - by (auto simp add: elt_set_plus_def set_plus add_ac) + a +o D <= D \ C" + by (auto simp add: elt_set_plus_def set_plus_def add_ac) -lemma set_plus_mono5: "a:C ==> B <= D ==> a +o B <= C + D" +lemma set_plus_mono5: "a:C ==> B <= D ==> a +o B <= C \ D" apply (subgoal_tac "a +o B <= a +o D") apply (erule order_trans) apply (erule set_plus_mono3) @@ -259,21 +205,21 @@ apply auto done -lemma set_plus_mono2_b: "C <= D ==> E <= F ==> x : C + E ==> - x : D + F" +lemma set_plus_mono2_b: "C <= D ==> E <= F ==> x : C \ E ==> + x : D \ F" apply (frule set_plus_mono2) prefer 2 apply force apply assumption done -lemma set_plus_mono3_b: "a : C ==> x : a +o D ==> x : C + D" +lemma set_plus_mono3_b: "a : C ==> x : a +o D ==> x : C \ D" apply (frule set_plus_mono3) apply auto done lemma set_plus_mono4_b: "(a::'a::comm_monoid_add) : C ==> - x : a +o D ==> x : D + C" + x : a +o D ==> x : D \ C" apply (frule set_plus_mono4) apply auto done @@ -281,8 +227,8 @@ lemma set_zero_plus [simp]: "(0::'a::comm_monoid_add) +o C = C" by (auto simp add: elt_set_plus_def) -lemma set_zero_plus2: "(0::'a::comm_monoid_add) : A ==> B <= A + B" - apply (auto intro!: subsetI simp add: set_plus) +lemma set_zero_plus2: "(0::'a::comm_monoid_add) : A ==> B <= A \ B" + apply (auto intro!: subsetI simp add: set_plus_def) apply (rule_tac x = 0 in bexI) apply (rule_tac x = x in bexI) apply (auto simp add: add_ac) @@ -302,15 +248,15 @@ by (rule iffI, rule set_minus_imp_plus, assumption, rule set_plus_imp_minus, assumption) -lemma set_times_intro [intro]: "a : C ==> b : D ==> a * b : C * D" - by (auto simp add: set_times) +lemma set_times_intro [intro]: "a : C ==> b : D ==> a * b : C \ D" + by (auto simp add: set_times_def) lemma set_times_intro2 [intro!]: "b : C ==> a * b : a *o C" by (auto simp add: elt_set_times_def) -lemma set_times_rearrange: "((a::'a::comm_monoid_mult) *o C) * - (b *o D) = (a * b) *o (C * D)" - apply (auto simp add: elt_set_times_def set_times) +lemma set_times_rearrange: "((a::'a::comm_monoid_mult) *o C) \ + (b *o D) = (a * b) *o (C \ D)" + apply (auto simp add: elt_set_times_def set_times_def) apply (rule_tac x = "ba * bb" in exI) apply (auto simp add: mult_ac) apply (rule_tac x = "aa * a" in exI) @@ -321,9 +267,9 @@ (a * b) *o C" by (auto simp add: elt_set_times_def mult_assoc) -lemma set_times_rearrange3: "((a::'a::semigroup_mult) *o B) * C = - a *o (B * C)" - apply (auto simp add: elt_set_times_def set_times) +lemma set_times_rearrange3: "((a::'a::semigroup_mult) *o B) \ C = + a *o (B \ C)" + apply (auto simp add: elt_set_times_def set_times_def) apply (blast intro: mult_ac) apply (rule_tac x = "a * aa" in exI) apply (rule conjI) @@ -333,9 +279,9 @@ apply (auto simp add: mult_ac) done -theorem set_times_rearrange4: "C * ((a::'a::comm_monoid_mult) *o D) = - a *o (C * D)" - apply (auto intro!: subsetI simp add: elt_set_times_def set_times +theorem set_times_rearrange4: "C \ ((a::'a::comm_monoid_mult) *o D) = + a *o (C \ D)" + apply (auto intro!: subsetI simp add: elt_set_times_def set_times_def mult_ac) apply (rule_tac x = "aa * ba" in exI) apply (auto simp add: mult_ac) @@ -348,17 +294,17 @@ by (auto simp add: elt_set_times_def) lemma set_times_mono2 [intro]: "(C::('a::times) set) <= D ==> E <= F ==> - C * E <= D * F" - by (auto simp add: set_times) + C \ E <= D \ F" + by (auto simp add: set_times_def) -lemma set_times_mono3 [intro]: "a : C ==> a *o D <= C * D" - by (auto simp add: elt_set_times_def set_times) +lemma set_times_mono3 [intro]: "a : C ==> a *o D <= C \ D" + by (auto simp add: elt_set_times_def set_times_def) lemma set_times_mono4 [intro]: "(a::'a::comm_monoid_mult) : C ==> - a *o D <= D * C" - by (auto simp add: elt_set_times_def set_times mult_ac) + a *o D <= D \ C" + by (auto simp add: elt_set_times_def set_times_def mult_ac) -lemma set_times_mono5: "a:C ==> B <= D ==> a *o B <= C * D" +lemma set_times_mono5: "a:C ==> B <= D ==> a *o B <= C \ D" apply (subgoal_tac "a *o B <= a *o D") apply (erule order_trans) apply (erule set_times_mono3) @@ -371,21 +317,21 @@ apply auto done -lemma set_times_mono2_b: "C <= D ==> E <= F ==> x : C * E ==> - x : D * F" +lemma set_times_mono2_b: "C <= D ==> E <= F ==> x : C \ E ==> + x : D \ F" apply (frule set_times_mono2) prefer 2 apply force apply assumption done -lemma set_times_mono3_b: "a : C ==> x : a *o D ==> x : C * D" +lemma set_times_mono3_b: "a : C ==> x : a *o D ==> x : C \ D" apply (frule set_times_mono3) apply auto done lemma set_times_mono4_b: "(a::'a::comm_monoid_mult) : C ==> - x : a *o D ==> x : D * C" + x : a *o D ==> x : D \ C" apply (frule set_times_mono4) apply auto done @@ -397,19 +343,19 @@ (a * b) +o (a *o C)" by (auto simp add: elt_set_plus_def elt_set_times_def ring_distribs) -lemma set_times_plus_distrib2: "(a::'a::semiring) *o (B + C) = - (a *o B) + (a *o C)" - apply (auto simp add: set_plus elt_set_times_def ring_distribs) +lemma set_times_plus_distrib2: "(a::'a::semiring) *o (B \ C) = + (a *o B) \ (a *o C)" + apply (auto simp add: set_plus_def elt_set_times_def ring_distribs) apply blast apply (rule_tac x = "b + bb" in exI) apply (auto simp add: ring_distribs) done -lemma set_times_plus_distrib3: "((a::'a::semiring) +o C) * D <= - a *o D + C * D" +lemma set_times_plus_distrib3: "((a::'a::semiring) +o C) \ D <= + a *o D \ C \ D" apply (auto intro!: subsetI simp add: - elt_set_plus_def elt_set_times_def set_times - set_plus ring_distribs) + elt_set_plus_def elt_set_times_def set_times_def + set_plus_def ring_distribs) apply auto done