diff -r 846c72206207 -r b3eb789616c3 src/HOL/Isar_Examples/Basic_Logic.thy --- a/src/HOL/Isar_Examples/Basic_Logic.thy Mon Nov 02 13:58:19 2015 +0100 +++ b/src/HOL/Isar_Examples/Basic_Logic.thy Mon Nov 02 14:09:14 2015 +0100 @@ -253,9 +253,7 @@ proof assume "P \ P" then show P - proof -- \ - rule \disjE\: \smash{$\infer{C}{A \disj B & \infer*{C}{[A]} & \infer*{C}{[B]}}$} -\ + proof -- \rule \disjE\: \smash{$\infer{\C\}{\A \ B\ & \infer*{\C\}{[\A\]} & \infer*{\C\}{[\B\]}}$}\ assume P show P by fact next assume P show P by fact @@ -324,8 +322,7 @@ proof assume "\x. P (f x)" then show "\y. P y" - proof (rule exE) -- - \rule \exE\: \smash{$\infer{B}{\ex x A(x) & \infer*{B}{[A(x)]_x}}$}\ + proof (rule exE) -- \rule \exE\: \smash{$\infer{\B\}{\\x. A(x)\ & \infer*{\B\}{[\A(x)\]_x}}$}\ fix a assume "P (f a)" (is "P ?witness") then show ?thesis by (rule exI [of P ?witness])