diff -r 6e2c6ccc5dc0 -r b4f892d0625d src/HOL/Library/Periodic_Fun.thy --- a/src/HOL/Library/Periodic_Fun.thy Tue Jan 24 23:05:32 2023 +0100 +++ b/src/HOL/Library/Periodic_Fun.thy Wed Jan 25 13:37:44 2023 +0000 @@ -128,5 +128,25 @@ interpretation cot: periodic_fun_simple cot "2 * of_real pi :: 'a :: {real_normed_field,banach}" by standard (simp only: cot_def [abs_def] sin.plus_1 cos.plus_1) - + +lemma cos_eq_neg_periodic_intro: + assumes "x - y = 2*(of_int k)*pi + pi \ x + y = 2*(of_int k)*pi + pi" + shows "cos x = - cos y" using assms +proof + assume "x - y = 2 * (of_int k) * pi + pi" + then show ?thesis + using cos.periodic_simps[of "y+pi"] + by (auto simp add:algebra_simps) +next + assume "x + y = 2 * real_of_int k * pi + pi " + then show ?thesis + using cos.periodic_simps[of "-y+pi"] + by (clarsimp simp add: algebra_simps) (smt (verit)) +qed + +lemma cos_eq_periodic_intro: + assumes "x - y = 2*(of_int k)*pi \ x + y = 2*(of_int k)*pi" + shows "cos x = cos y" + by (smt (verit, ccfv_SIG) assms cos_eq_neg_periodic_intro cos_minus_pi cos_periodic_pi) + end