diff -r 8018173a7979 -r b6105462ccd3 src/ZF/ind-syntax.ML --- a/src/ZF/ind-syntax.ML Sat Apr 05 16:18:58 2003 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,162 +0,0 @@ -(* Title: ZF/ind-syntax.ML - ID: $Id$ - Author: Lawrence C Paulson, Cambridge University Computer Laboratory - Copyright 1993 University of Cambridge - -Abstract Syntax functions for Inductive Definitions -*) - - -(*SHOULD BE ABLE TO DELETE THESE!*) -fun flatten_typ sign T = - let val {syn,...} = Sign.rep_sg sign - in Pretty.str_of (Syntax.pretty_typ syn T) - end; -fun flatten_term sign t = Pretty.str_of (Sign.pretty_term sign t); - -(*Add constants to a theory*) -infix addconsts; -fun thy addconsts const_decs = - extend_theory thy (space_implode "_" (flat (map #1 const_decs)) - ^ "_Theory") - ([], [], [], [], const_decs, None) []; - - -(*Make a definition, lhs==rhs, checking that vars on lhs contain *) -fun mk_defpair sign (lhs,rhs) = - let val Const(name,_) = head_of lhs - val dummy = assert (term_vars rhs subset term_vars lhs - andalso - term_frees rhs subset term_frees lhs - andalso - term_tvars rhs subset term_tvars lhs - andalso - term_tfrees rhs subset term_tfrees lhs) - ("Extra variables on RHS in definition of " ^ name) - in (name ^ "_def", - flatten_term sign (Logic.mk_equals (lhs,rhs))) - end; - -fun lookup_const sign a = Symtab.lookup(#const_tab (Sign.rep_sg sign), a); - -(*export to Pure/library? *) -fun assert_all pred l msg_fn = - let fun asl [] = () - | asl (x::xs) = if pred x then asl xs - else error (msg_fn x) - in asl l end; - - -(** Abstract syntax definitions for FOL and ZF **) - -val iT = Type("i",[]) -and oT = Type("o",[]); - -fun ap t u = t$u; -fun app t (u1,u2) = t $ u1 $ u2; - -(*Given u expecting arguments of types [T1,...,Tn], create term of - type T1*...*Tn => i using split*) -fun ap_split split u [ ] = Abs("null", iT, u) - | ap_split split u [_] = u - | ap_split split u [_,_] = split $ u - | ap_split split u (T::Ts) = - split $ (Abs("v", T, ap_split split (u $ Bound(length Ts - 2)) Ts)); - -val conj = Const("op &", [oT,oT]--->oT) -and disj = Const("op |", [oT,oT]--->oT) -and imp = Const("op -->", [oT,oT]--->oT); - -val eq_const = Const("op =", [iT,iT]--->oT); - -val mem_const = Const("op :", [iT,iT]--->oT); - -val exists_const = Const("Ex", [iT-->oT]--->oT); -fun mk_exists (Free(x,T),P) = exists_const $ (absfree (x,T,P)); - -val all_const = Const("All", [iT-->oT]--->oT); -fun mk_all (Free(x,T),P) = all_const $ (absfree (x,T,P)); - -(*Creates All(%v.v:A --> P(v)) rather than Ball(A,P) *) -fun mk_all_imp (A,P) = - all_const $ Abs("v", iT, imp $ (mem_const $ Bound 0 $ A) $ (P $ Bound 0)); - - -val Part_const = Const("Part", [iT,iT-->iT]--->iT); - -val Collect_const = Const("Collect", [iT,iT-->oT]--->iT); -fun mk_Collect (a,D,t) = Collect_const $ D $ absfree(a, iT, t); - -val Trueprop = Const("Trueprop",oT-->propT); -fun mk_tprop P = Trueprop $ P; -fun dest_tprop (Const("Trueprop",_) $ P) = P; - -(*Prove a goal stated as a term, with exception handling*) -fun prove_term sign defs (P,tacsf) = - let val ct = Sign.cterm_of sign P - in prove_goalw_cterm defs ct tacsf - handle e => (writeln ("Exception in proof of\n" ^ - Sign.string_of_cterm ct); - raise e) - end; - -(*Read an assumption in the given theory*) -fun assume_read thy a = assume (Sign.read_cterm (sign_of thy) (a,propT)); - -(*Make distinct individual variables a1, a2, a3, ..., an. *) -fun mk_frees a [] = [] - | mk_frees a (T::Ts) = Free(a,T) :: mk_frees (bump_string a) Ts; - -(*Used by intr-elim.ML and in individual datatype definitions*) -val basic_monos = [subset_refl, imp_refl, disj_mono, conj_mono, - ex_mono, Collect_mono, Part_mono, in_mono]; - -(*Return the conclusion of a rule, of the form t:X*) -fun rule_concl rl = - case dest_tprop (Logic.strip_imp_concl rl) of - Const("op :",_) $ t $ X => (t,X) - | _ => error "Conclusion of rule should be a set membership"; - -(*For deriving cases rules. CollectD2 discards the domain, which is redundant; - read_instantiate replaces a propositional variable by a formula variable*) -val equals_CollectD = - read_instantiate [("W","?Q")] - (make_elim (equalityD1 RS subsetD RS CollectD2)); - - -(*From HOL/ex/meson.ML: raises exception if no rules apply -- unlike RL*) -fun tryres (th, rl::rls) = (th RS rl handle THM _ => tryres(th,rls)) - | tryres (th, []) = raise THM("tryres", 0, [th]); - -fun gen_make_elim elim_rls rl = - standard (tryres (rl, elim_rls @ [revcut_rl])); - -(** For constructor.ML **) - -(*Avoids duplicate definitions by removing constants already declared mixfix*) -fun remove_mixfixes None decs = decs - | remove_mixfixes (Some sext) decs = - let val mixtab = Symtab.st_of_declist(Syntax.constants sext, Symtab.null) - fun is_mix c = case Symtab.lookup(mixtab,c) of - None=>false | Some _ => true - in map (fn (cs,styp)=> (filter_out is_mix cs, styp)) decs - end; - -fun ext_constants None = [] - | ext_constants (Some sext) = Syntax.constants sext; - - -(*Could go to FOL, but it's hardly general*) -val [def] = goal IFOL.thy "a==b ==> a=c <-> c=b"; -by (rewtac def); -by (rtac iffI 1); -by (REPEAT (etac sym 1)); -val def_swap_iff = result(); - -val def_trans = prove_goal IFOL.thy "[| f==g; g(a)=b |] ==> f(a)=b" - (fn [rew,prem] => [ rewtac rew, rtac prem 1 ]); - -(*Delete needless equality assumptions*) -val refl_thin = prove_goal IFOL.thy "!!P. [| a=a; P |] ==> P" - (fn _ => [assume_tac 1]); -