diff -r 562e99c3d316 -r b6d0cff57d96 src/HOL/Metis_Examples/Tarski.thy --- a/src/HOL/Metis_Examples/Tarski.thy Sat Dec 24 15:53:10 2011 +0100 +++ b/src/HOL/Metis_Examples/Tarski.thy Sat Dec 24 15:53:10 2011 +0100 @@ -196,8 +196,7 @@ lemma (in PO) dualPO: "dual cl \ PartialOrder" apply (insert cl_po) -apply (simp add: PartialOrder_def dual_def refl_on_converse - trans_converse antisym_converse) +apply (simp add: PartialOrder_def dual_def) done lemma Rdual: @@ -519,22 +518,22 @@ thus "lub {x. (x, f x) \ r \ x \ A} cl \ A" using A1 by metis next assume A1: "H = {x. (x, f x) \ r \ x \ A}" - have F1: "\v. (\R. R \ v) = v" by (metis Collect_mem_eq Collect_def) - have F2: "\w u. (\R. u R \ w R) = u \ w" - by (metis Collect_conj_eq Collect_def) - have F3: "\x v. (\R. v R \ x) = v -` x" by (metis vimage_def Collect_def) + have F1: "\v. {R. R \ v} = v" by (metis Collect_mem_eq) + have F2: "\w u. {R. R \ u \ R \ w} = u \ w" + by (metis Collect_conj_eq Collect_mem_eq) + have F3: "\x v. {R. v R \ x} = v -` x" by (metis vimage_def) hence F4: "A \ (\R. (R, f R)) -` r = H" using A1 by auto - hence F5: "(f (lub H cl), lub H cl) \ r" - by (metis F1 F3 F2 Int_commute flubH_le_lubH Collect_def) + hence F5: "(f (lub H cl), lub H cl) \ r" + by (metis A1 flubH_le_lubH) have F6: "(lub H cl, f (lub H cl)) \ r" - by (metis F1 F3 F2 F4 Int_commute lubH_le_flubH Collect_def) + by (metis A1 lubH_le_flubH) have "(lub H cl, f (lub H cl)) \ r \ f (lub H cl) = lub H cl" using F5 by (metis antisymE) hence "f (lub H cl) = lub H cl" using F6 by metis thus "H = {x. (x, f x) \ r \ x \ A} \ f (lub {x. (x, f x) \ r \ x \ A} cl) = lub {x. (x, f x) \ r \ x \ A} cl" - by (metis F4 F2 F3 F1 Collect_def Int_commute) + by metis qed lemma (in CLF) (*lubH_is_fixp:*)