diff -r c663e675e177 -r b8ef7afe3a6b src/ZF/int_arith.ML --- a/src/ZF/int_arith.ML Sun Oct 07 15:49:25 2007 +0200 +++ b/src/ZF/int_arith.ML Sun Oct 07 21:19:31 2007 +0200 @@ -11,38 +11,38 @@ such as -x = #3 **) -Addsimps [inst "y" "integ_of(?w)" zminus_equation, - inst "x" "integ_of(?w)" equation_zminus]; +Addsimps [inst "y" "integ_of(?w)" @{thm zminus_equation}, + inst "x" "integ_of(?w)" @{thm equation_zminus}]; -AddIffs [inst "y" "integ_of(?w)" zminus_zless, - inst "x" "integ_of(?w)" zless_zminus]; +AddIffs [inst "y" "integ_of(?w)" @{thm zminus_zless}, + inst "x" "integ_of(?w)" @{thm zless_zminus}]; -AddIffs [inst "y" "integ_of(?w)" zminus_zle, - inst "x" "integ_of(?w)" zle_zminus]; +AddIffs [inst "y" "integ_of(?w)" @{thm zminus_zle}, + inst "x" "integ_of(?w)" @{thm zle_zminus}]; -Addsimps [inst "s" "integ_of(?w)" (thm "Let_def")]; +Addsimps [inst "s" "integ_of(?w)" @{thm Let_def}]; (*** Simprocs for numeric literals ***) (** Combining of literal coefficients in sums of products **) Goal "(x $< y) <-> (x$-y $< #0)"; -by (simp_tac (simpset() addsimps zcompare_rls) 1); +by (simp_tac (simpset() addsimps @{thms zcompare_rls}) 1); qed "zless_iff_zdiff_zless_0"; Goal "[| x: int; y: int |] ==> (x = y) <-> (x$-y = #0)"; -by (asm_simp_tac (simpset() addsimps zcompare_rls) 1); +by (asm_simp_tac (simpset() addsimps @{thms zcompare_rls}) 1); qed "eq_iff_zdiff_eq_0"; Goal "(x $<= y) <-> (x$-y $<= #0)"; -by (asm_simp_tac (simpset() addsimps zcompare_rls) 1); +by (asm_simp_tac (simpset() addsimps @{thms zcompare_rls}) 1); qed "zle_iff_zdiff_zle_0"; (** For combine_numerals **) Goal "i$*u $+ (j$*u $+ k) = (i$+j)$*u $+ k"; -by (simp_tac (simpset() addsimps [zadd_zmult_distrib]@zadd_ac) 1); +by (simp_tac (simpset() addsimps [@{thm zadd_zmult_distrib}]@ @{thms zadd_ac}) 1); qed "left_zadd_zmult_distrib"; @@ -56,37 +56,37 @@ zle_iff_zdiff_zle_0]; Goal "(i$*u $+ m = j$*u $+ n) <-> ((i$-j)$*u $+ m = intify(n))"; -by (simp_tac (simpset() addsimps [zdiff_def, zadd_zmult_distrib]) 1); -by (simp_tac (simpset() addsimps zcompare_rls) 1); -by (simp_tac (simpset() addsimps zadd_ac) 1); +by (simp_tac (simpset() addsimps [@{thm zdiff_def}, @{thm zadd_zmult_distrib}]) 1); +by (simp_tac (simpset() addsimps @{thms zcompare_rls}) 1); +by (simp_tac (simpset() addsimps @{thms zadd_ac}) 1); qed "eq_add_iff1"; Goal "(i$*u $+ m = j$*u $+ n) <-> (intify(m) = (j$-i)$*u $+ n)"; -by (simp_tac (simpset() addsimps [zdiff_def, zadd_zmult_distrib]) 1); -by (simp_tac (simpset() addsimps zcompare_rls) 1); -by (simp_tac (simpset() addsimps zadd_ac) 1); +by (simp_tac (simpset() addsimps [@{thm zdiff_def}, @{thm zadd_zmult_distrib}]) 1); +by (simp_tac (simpset() addsimps @{thms zcompare_rls}) 1); +by (simp_tac (simpset() addsimps @{thms zadd_ac}) 1); qed "eq_add_iff2"; Goal "(i$*u $+ m $< j$*u $+ n) <-> ((i$-j)$*u $+ m $< n)"; -by (asm_simp_tac (simpset() addsimps [zdiff_def, zadd_zmult_distrib]@ - zadd_ac@rel_iff_rel_0_rls) 1); +by (asm_simp_tac (simpset() addsimps [@{thm zdiff_def}, @{thm zadd_zmult_distrib}]@ + @{thms zadd_ac} @ rel_iff_rel_0_rls) 1); qed "less_add_iff1"; Goal "(i$*u $+ m $< j$*u $+ n) <-> (m $< (j$-i)$*u $+ n)"; -by (asm_simp_tac (simpset() addsimps [zdiff_def, zadd_zmult_distrib]@ - zadd_ac@rel_iff_rel_0_rls) 1); +by (asm_simp_tac (simpset() addsimps [@{thm zdiff_def}, @{thm zadd_zmult_distrib}]@ + @{thms zadd_ac} @ rel_iff_rel_0_rls) 1); qed "less_add_iff2"; Goal "(i$*u $+ m $<= j$*u $+ n) <-> ((i$-j)$*u $+ m $<= n)"; -by (simp_tac (simpset() addsimps [zdiff_def, zadd_zmult_distrib]) 1); -by (simp_tac (simpset() addsimps zcompare_rls) 1); -by (simp_tac (simpset() addsimps zadd_ac) 1); +by (simp_tac (simpset() addsimps [@{thm zdiff_def}, @{thm zadd_zmult_distrib}]) 1); +by (simp_tac (simpset() addsimps @{thms zcompare_rls}) 1); +by (simp_tac (simpset() addsimps @{thms zadd_ac}) 1); qed "le_add_iff1"; Goal "(i$*u $+ m $<= j$*u $+ n) <-> (m $<= (j$-i)$*u $+ n)"; -by (simp_tac (simpset() addsimps [zdiff_def, zadd_zmult_distrib]) 1); -by (simp_tac (simpset() addsimps zcompare_rls) 1); -by (simp_tac (simpset() addsimps zadd_ac) 1); +by (simp_tac (simpset() addsimps [@{thm zdiff_def}, @{thm zadd_zmult_distrib}]) 1); +by (simp_tac (simpset() addsimps @{thms zcompare_rls}) 1); +by (simp_tac (simpset() addsimps @{thms zadd_ac}) 1); qed "le_add_iff2"; @@ -178,41 +178,41 @@ (*Simplify #1*n and n*#1 to n*) -val add_0s = [zadd_0_intify, zadd_0_right_intify]; +val add_0s = [@{thm zadd_0_intify}, @{thm zadd_0_right_intify}]; -val mult_1s = [zmult_1_intify, zmult_1_right_intify, - zmult_minus1, zmult_minus1_right]; +val mult_1s = [@{thm zmult_1_intify}, @{thm zmult_1_right_intify}, + @{thm zmult_minus1}, @{thm zmult_minus1_right}]; -val tc_rules = [integ_of_type, intify_in_int, - int_of_type, zadd_type, zdiff_type, zmult_type] @ - thms "bin.intros"; -val intifys = [intify_ident, zadd_intify1, zadd_intify2, - zdiff_intify1, zdiff_intify2, zmult_intify1, zmult_intify2, - zless_intify1, zless_intify2, zle_intify1, zle_intify2]; +val tc_rules = [@{thm integ_of_type}, @{thm intify_in_int}, + @{thm int_of_type}, @{thm zadd_type}, @{thm zdiff_type}, @{thm zmult_type}] @ + @{thms bin.intros}; +val intifys = [@{thm intify_ident}, @{thm zadd_intify1}, @{thm zadd_intify2}, + @{thm zdiff_intify1}, @{thm zdiff_intify2}, @{thm zmult_intify1}, @{thm zmult_intify2}, + @{thm zless_intify1}, @{thm zless_intify2}, @{thm zle_intify1}, @{thm zle_intify2}]; (*To perform binary arithmetic*) -val bin_simps = [add_integ_of_left] @ bin_arith_simps @ bin_rel_simps; +val bin_simps = [@{thm add_integ_of_left}] @ @{thms bin_arith_simps} @ @{thms bin_rel_simps}; (*To evaluate binary negations of coefficients*) -val zminus_simps = NCons_simps @ - [integ_of_minus RS sym, - bin_minus_1, bin_minus_0, bin_minus_Pls, bin_minus_Min, - bin_pred_1, bin_pred_0, bin_pred_Pls, bin_pred_Min]; +val zminus_simps = @{thms NCons_simps} @ + [@{thm integ_of_minus} RS sym, + @{thm bin_minus_1}, @{thm bin_minus_0}, @{thm bin_minus_Pls}, @{thm bin_minus_Min}, + @{thm bin_pred_1}, @{thm bin_pred_0}, @{thm bin_pred_Pls}, @{thm bin_pred_Min}]; (*To let us treat subtraction as addition*) -val diff_simps = [zdiff_def, zminus_zadd_distrib, zminus_zminus]; +val diff_simps = [@{thm zdiff_def}, @{thm zminus_zadd_distrib}, @{thm zminus_zminus}]; (*push the unary minus down: - x * y = x * - y *) val int_minus_mult_eq_1_to_2 = - [zmult_zminus, zmult_zminus_right RS sym] MRS trans |> standard; + [@{thm zmult_zminus}, @{thm zmult_zminus_right} RS sym] MRS trans |> standard; (*to extract again any uncancelled minuses*) val int_minus_from_mult_simps = - [zminus_zminus, zmult_zminus, zmult_zminus_right]; + [@{thm zminus_zminus}, @{thm zmult_zminus}, @{thm zmult_zminus_right}]; (*combine unary minus with numeric literals, however nested within a product*) val int_mult_minus_simps = - [zmult_assoc, zmult_zminus RS sym, int_minus_mult_eq_1_to_2]; + [@{thm zmult_assoc}, @{thm zmult_zminus} RS sym, int_minus_mult_eq_1_to_2]; fun prep_simproc (name, pats, proc) = Simplifier.simproc (the_context ()) name pats proc; @@ -226,9 +226,9 @@ val find_first_coeff = find_first_coeff [] fun trans_tac _ = ArithData.gen_trans_tac iff_trans - val norm_ss1 = ZF_ss addsimps add_0s @ mult_1s @ diff_simps @ zminus_simps @ zadd_ac + val norm_ss1 = ZF_ss addsimps add_0s @ mult_1s @ diff_simps @ zminus_simps @ @{thms zadd_ac} val norm_ss2 = ZF_ss addsimps bin_simps @ int_mult_minus_simps @ intifys - val norm_ss3 = ZF_ss addsimps int_minus_from_mult_simps @ zadd_ac @ zmult_ac @ tc_rules @ intifys + val norm_ss3 = ZF_ss addsimps int_minus_from_mult_simps @ @{thms zadd_ac} @ @{thms zmult_ac} @ tc_rules @ intifys fun norm_tac ss = ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss1)) THEN ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss2)) @@ -304,9 +304,9 @@ val prove_conv = prove_conv_nohyps "int_combine_numerals" fun trans_tac _ = ArithData.gen_trans_tac trans - val norm_ss1 = ZF_ss addsimps add_0s @ mult_1s @ diff_simps @ zminus_simps @ zadd_ac @ intifys + val norm_ss1 = ZF_ss addsimps add_0s @ mult_1s @ diff_simps @ zminus_simps @ @{thms zadd_ac} @ intifys val norm_ss2 = ZF_ss addsimps bin_simps @ int_mult_minus_simps @ intifys - val norm_ss3 = ZF_ss addsimps int_minus_from_mult_simps @ zadd_ac @ zmult_ac @ tc_rules @ intifys + val norm_ss3 = ZF_ss addsimps int_minus_from_mult_simps @ @{thms zadd_ac} @ @{thms zmult_ac} @ tc_rules @ intifys fun norm_tac ss = ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss1)) THEN ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss2)) @@ -341,15 +341,15 @@ fun mk_coeff(k,t) = if t=one then mk_numeral k else raise TERM("mk_coeff", []) fun dest_coeff t = (dest_numeral t, one) (*We ONLY want pure numerals.*) - val left_distrib = zmult_assoc RS sym RS trans + val left_distrib = @{thm zmult_assoc} RS sym RS trans val prove_conv = prove_conv_nohyps "int_combine_numerals_prod" fun trans_tac _ = ArithData.gen_trans_tac trans val norm_ss1 = ZF_ss addsimps mult_1s @ diff_simps @ zminus_simps - val norm_ss2 = ZF_ss addsimps [zmult_zminus_right RS sym] @ - bin_simps @ zmult_ac @ tc_rules @ intifys + val norm_ss2 = ZF_ss addsimps [@{thm zmult_zminus_right} RS sym] @ + bin_simps @ @{thms zmult_ac} @ tc_rules @ intifys fun norm_tac ss = ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss1)) THEN ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss2))