diff -r 8eb6365f5916 -r b9a1486e79be src/HOL/Analysis/Lebesgue_Measure.thy --- a/src/HOL/Analysis/Lebesgue_Measure.thy Sun Oct 16 22:43:51 2016 +0200 +++ b/src/HOL/Analysis/Lebesgue_Measure.thy Mon Oct 17 11:46:22 2016 +0200 @@ -82,7 +82,7 @@ by fastforce have "(\i\S. F (r i) - F (l i)) = (F (r m) - F (l m)) + (\i\S - {m}. F (r i) - F (l i))" - using m psubset by (intro setsum.remove) auto + using m psubset by (intro sum.remove) auto also have "(\i\S - {m}. F (r i) - F (l i)) \ F b - F (r m)" proof (intro psubset.IH) show "S - {m} \ S" @@ -144,7 +144,7 @@ by (intro psubset) auto also have "\ \ (\i\S. F (r i) - F (l i))" using psubset.prems - by (intro setsum_mono2 psubset) (auto intro: less_imp_le) + by (intro sum_mono2 psubset) (auto intro: less_imp_le) finally show ?thesis . next assume "\ ?R" @@ -155,13 +155,13 @@ have "(\i\S. F (r i) - F (l i)) \ (\i\?S1 \ ?S2 \ {j}. F (r i) - F (l i))" using \j \ S\ \finite S\ psubset.prems j - by (intro setsum_mono2) (auto intro: less_imp_le) + by (intro sum_mono2) (auto intro: less_imp_le) also have "(\i\?S1 \ ?S2 \ {j}. F (r i) - F (l i)) = (\i\?S1. F (r i) - F (l i)) + (\i\?S2 . F (r i) - F (l i)) + (F (r j) - F (l j))" using psubset(1) psubset.prems(1) j - apply (subst setsum.union_disjoint) + apply (subst sum.union_disjoint) apply simp_all - apply (subst setsum.union_disjoint) + apply (subst sum.union_disjoint) apply auto apply (metis less_le_not_le) done @@ -245,7 +245,7 @@ apply arith by (rule deltai_gt0) also have "... \ (\i \ S. F(r i) - F(l i) + epsilon / 2^(i+2))" - apply (rule setsum_mono) + apply (rule sum_mono) apply simp apply (rule order_trans) apply (rule less_imp_le) @@ -253,11 +253,11 @@ by auto also have "... = (\i \ S. F(r i) - F(l i)) + (epsilon / 4) * (\i \ S. (1 / 2)^i)" (is "_ = ?t + _") - by (subst setsum.distrib) (simp add: field_simps setsum_distrib_left) + by (subst sum.distrib) (simp add: field_simps sum_distrib_left) also have "... \ ?t + (epsilon / 4) * (\ i < Suc n. (1 / 2)^i)" apply (rule add_left_mono) apply (rule mult_left_mono) - apply (rule setsum_mono2) + apply (rule sum_mono2) using egt0 apply auto by (frule Sbound, auto) also have "... \ ?t + (epsilon / 2)" @@ -281,11 +281,11 @@ also have "... = (\i\S. F (r i) - F (l i)) + epsilon" by auto also have "... \ (\i\n. F (r i) - F (l i)) + epsilon" - using finS Sbound Sprop by (auto intro!: add_right_mono setsum_mono3) + using finS Sbound Sprop by (auto intro!: add_right_mono sum_mono3) finally have "ennreal (F b - F a) \ (\i\n. ennreal (F (r i) - F (l i))) + epsilon" - using egt0 by (simp add: ennreal_plus[symmetric] setsum_nonneg del: ennreal_plus) + using egt0 by (simp add: ennreal_plus[symmetric] sum_nonneg del: ennreal_plus) then show "ennreal (F b - F a) \ (\i. ennreal (F (r i) - F (l i))) + (epsilon :: real)" - by (rule order_trans) (auto intro!: add_mono setsum_le_suminf simp del: setsum_ennreal) + by (rule order_trans) (auto intro!: add_mono sum_le_suminf simp del: sum_ennreal) qed moreover have "(\i. ennreal (F (r i) - F (l i))) \ ennreal (F b - F a)" using \a \ b\ by (auto intro!: suminf_le_const ennreal_le_iff[THEN iffD2] claim1) @@ -637,7 +637,7 @@ fixes t :: "'a::euclidean_space" shows "c \ 0 \ lborel = density (distr lborel borel (\x. t + c *\<^sub>R x)) (\_. \c\^DIM('a))" using lborel_affine_euclidean[where c="\_::'a. c" and t=t] - unfolding scaleR_scaleR[symmetric] scaleR_setsum_right[symmetric] euclidean_representation setprod_constant by simp + unfolding scaleR_scaleR[symmetric] scaleR_sum_right[symmetric] euclidean_representation setprod_constant by simp lemma lborel_real_affine: "c \ 0 \ lborel = density (distr lborel borel (\x. t + c * x)) (\_. ennreal (abs c))" @@ -722,7 +722,7 @@ next assume "x \ 0" then show ?thesis using lebesgue_affine_measurable[of "\_. x" 0] - unfolding scaleR_scaleR[symmetric] scaleR_setsum_right[symmetric] euclidean_representation + unfolding scaleR_scaleR[symmetric] scaleR_sum_right[symmetric] euclidean_representation by (auto simp add: ac_simps) qed @@ -747,7 +747,7 @@ using bij_vimage_eq_inv_image[OF \bij ?T'\, of S] by auto have trans_eq_T: "(\x. \ + (\j\Basis. (m * (x \ j)) *\<^sub>R j)) = T m \" for m \ - unfolding T_def[abs_def] scaleR_scaleR[symmetric] scaleR_setsum_right[symmetric] + unfolding T_def[abs_def] scaleR_scaleR[symmetric] scaleR_sum_right[symmetric] by (auto simp add: euclidean_representation ac_simps) have T[measurable]: "T r d \ lebesgue \\<^sub>M lebesgue" for r d