diff -r 8eb6365f5916 -r b9a1486e79be src/HOL/Library/Groups_Big_Fun.thy --- a/src/HOL/Library/Groups_Big_Fun.thy Sun Oct 16 22:43:51 2016 +0200 +++ b/src/HOL/Library/Groups_Big_Fun.thy Mon Oct 17 11:46:22 2016 +0200 @@ -216,11 +216,11 @@ sublocale Sum_any: comm_monoid_fun plus 0 defines Sum_any = Sum_any.G - rewrites "comm_monoid_set.F plus 0 = setsum" + rewrites "comm_monoid_set.F plus 0 = sum" proof - show "comm_monoid_fun plus 0" .. then interpret Sum_any: comm_monoid_fun plus 0 . - from setsum_def show "comm_monoid_set.F plus 0 = setsum" by (auto intro: sym) + from sum_def show "comm_monoid_set.F plus 0 = sum" by (auto intro: sym) qed end @@ -240,7 +240,7 @@ note assms moreover have "{a. g a * r \ 0} \ {a. g a \ 0}" by auto ultimately show ?thesis - by (simp add: setsum_distrib_right Sum_any.expand_superset [of "{a. g a \ 0}"]) + by (simp add: sum_distrib_right Sum_any.expand_superset [of "{a. g a \ 0}"]) qed lemma Sum_any_right_distrib: @@ -251,7 +251,7 @@ note assms moreover have "{a. r * g a \ 0} \ {a. g a \ 0}" by auto ultimately show ?thesis - by (simp add: setsum_distrib_left Sum_any.expand_superset [of "{a. g a \ 0}"]) + by (simp add: sum_distrib_left Sum_any.expand_superset [of "{a. g a \ 0}"]) qed lemma Sum_any_product: @@ -266,7 +266,7 @@ ultimately show ?thesis using assms by (auto simp add: Sum_any.expand_set [of f] Sum_any.expand_set [of g] Sum_any.expand_superset [of "{a. f a \ 0}"] Sum_any.expand_superset [of "{b. g b \ 0}"] - setsum_product) + sum_product) qed lemma Sum_any_eq_zero_iff [simp]: @@ -325,7 +325,7 @@ have "{a. c ^ f a \ 1} \ {a. f a \ 0}" by (auto intro: ccontr) with assms show ?thesis - by (simp add: Sum_any.expand_set Prod_any.expand_superset power_setsum) + by (simp add: Sum_any.expand_set Prod_any.expand_superset power_sum) qed end