diff -r 8eb6365f5916 -r b9a1486e79be src/HOL/Probability/Probability_Measure.thy --- a/src/HOL/Probability/Probability_Measure.thy Sun Oct 16 22:43:51 2016 +0200 +++ b/src/HOL/Probability/Probability_Measure.thy Mon Oct 17 11:46:22 2016 +0200 @@ -383,7 +383,7 @@ by (intro finite_measure_UNION) auto qed -lemma (in prob_space) prob_setsum: +lemma (in prob_space) prob_sum: assumes [simp, intro]: "finite I" assumes P: "\n. n \ I \ {x\space M. P n x} \ events" assumes Q: "{x\space M. Q x} \ events" @@ -1025,14 +1025,14 @@ qed auto qed -lemma (in prob_space) simple_distributed_setsum_space: +lemma (in prob_space) simple_distributed_sum_space: assumes X: "simple_distributed M X f" - shows "setsum f (X`space M) = 1" + shows "sum f (X`space M) = 1" proof - - from X have "setsum f (X`space M) = prob (\i\X`space M. X -` {i} \ space M)" + from X have "sum f (X`space M) = prob (\i\X`space M. X -` {i} \ space M)" by (subst finite_measure_finite_Union) (auto simp add: disjoint_family_on_def simple_distributed_measure simple_distributed_simple_function simple_functionD - intro!: setsum.cong arg_cong[where f="prob"]) + intro!: sum.cong arg_cong[where f="prob"]) also have "\ = prob (space M)" by (auto intro!: arg_cong[where f=prob]) finally show ?thesis @@ -1058,10 +1058,10 @@ using y Px[THEN simple_distributed_finite] by (auto simp: AE_count_space nn_integral_count_space_finite) also have "\ = (\x\X`space M. if (x, y) \ (\x. (X x, Y x)) ` space M then Pxy (x, y) else 0)" - using Pxy by (intro setsum_ennreal) auto + using Pxy by (intro sum_ennreal) auto finally show ?thesis using simple_distributed_nonneg[OF Py] simple_distributed_nonneg[OF Pxy] - by (subst (asm) ennreal_inj) (auto intro!: setsum_nonneg) + by (subst (asm) ennreal_inj) (auto intro!: sum_nonneg) qed lemma distributedI_real: