diff -r 1b0fc6ceb750 -r bb5d036f3523 src/HOL/Analysis/Convex.thy --- a/src/HOL/Analysis/Convex.thy Thu Jan 25 17:08:07 2024 +0000 +++ b/src/HOL/Analysis/Convex.thy Fri Jan 26 11:19:22 2024 +0000 @@ -911,14 +911,10 @@ next case True define r where "r \ (\i\I. a i * b i) / (\i\I. (b i)\<^sup>2)" - with True have *: "(\i\I. a i * b i) = r * (\i\I. (b i)\<^sup>2)" - by simp have "0 \ (\i\I. (a i - r * b i)\<^sup>2)" - by (meson sum_nonneg zero_le_power2) + by (simp add: sum_nonneg) also have "... = (\i\I. (a i)\<^sup>2) - 2 * r * (\i\I. a i * b i) + r\<^sup>2 * (\i\I. (b i)\<^sup>2)" by (simp add: algebra_simps power2_eq_square sum_distrib_left flip: sum.distrib) - also have "\ = (\i\I. (a i)\<^sup>2) - (\i\I. a i * b i) * r" - by (simp add: * power2_eq_square) also have "\ = (\i\I. (a i)\<^sup>2) - ((\i\I. a i * b i))\<^sup>2 / (\i\I. (b i)\<^sup>2)" by (simp add: r_def power2_eq_square) finally have "0 \ (\i\I. (a i)\<^sup>2) - ((\i\I. a i * b i))\<^sup>2 / (\i\I. (b i)\<^sup>2)" . @@ -2436,4 +2432,4 @@ "convex hull (\i\A. B i) = (\i\A. convex hull (B i))" by (induction A rule: infinite_finite_induct) (auto simp: convex_hull_set_plus) -end \ No newline at end of file +end