diff -r c26665a197dc -r bb5db3d1d6dd src/HOL/Probability/Information.thy --- a/src/HOL/Probability/Information.thy Thu Oct 11 11:56:43 2012 +0200 +++ b/src/HOL/Probability/Information.thy Thu Oct 11 14:38:58 2012 +0200 @@ -1007,17 +1007,6 @@ "\(X ; Y | Z) \ conditional_mutual_information b (count_space (X ` space M)) (count_space (Y ` space M)) (count_space (Z ` space M)) X Y Z" -lemma (in pair_sigma_finite) borel_measurable_positive_integral_fst: - "(\(x, y). f x y) \ borel_measurable (M1 \\<^isub>M M2) \ (\x. \\<^isup>+ y. f x y \M2) \ borel_measurable M1" - using positive_integral_fst_measurable(1)[of "\(x, y). f x y"] by simp - -lemma (in pair_sigma_finite) borel_measurable_positive_integral_snd: - assumes "(\(x, y). f x y) \ borel_measurable (M2 \\<^isub>M M1)" shows "(\x. \\<^isup>+ y. f x y \M1) \ borel_measurable M2" -proof - - interpret Q: pair_sigma_finite M2 M1 by default - from Q.borel_measurable_positive_integral_fst assms show ?thesis by simp -qed - lemma (in information_space) assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T" and P: "sigma_finite_measure P" assumes Px: "distributed M S X Px"