diff -r a39e5d43de55 -r bbefb6ce5cb2 doc-src/TutorialI/Recdef/Nested2.thy --- a/doc-src/TutorialI/Recdef/Nested2.thy Fri Sep 01 18:29:52 2000 +0200 +++ b/doc-src/TutorialI/Recdef/Nested2.thy Fri Sep 01 19:09:44 2000 +0200 @@ -19,7 +19,7 @@ applies it automatically and the above definition of @{term"trev"} succeeds now. As a reward for our effort, we can now prove the desired lemma directly. The key is the fact that we no longer need the verbose -induction schema for type @{name"term"} but the simpler one arising from +induction schema for type @{text"term"} but the simpler one arising from @{term"trev"}: *}; @@ -39,7 +39,7 @@ text{*\noindent If the proof of the induction step mystifies you, we recommend to go through the chain of simplification steps in detail; you will probably need the help of -@{name"trace_simp"}. +@{text"trace_simp"}. %\begin{quote} %{term[display]"trev(trev(App f ts))"}\\ %{term[display]"App f (rev(map trev (rev(map trev ts))))"}\\ @@ -66,7 +66,7 @@ \isacommand{recdef} would try to prove the unprovable @{term"size t < Suc (term_list_size ts)"}, without any assumption about @{term"t"}. Therefore \isacommand{recdef} has been supplied with the congruence theorem -@{name"map_cong"}: +@{thm[source]map_cong}: \begin{quote} @{thm[display,margin=50]"map_cong"[no_vars]} \end{quote}