diff -r a0460a450cf9 -r bbfc360db011 doc-src/TutorialI/Overview/Ordinal.thy --- a/doc-src/TutorialI/Overview/Ordinal.thy Mon Jul 01 12:50:35 2002 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,52 +0,0 @@ -theory Ordinal = Main: - -datatype ordinal = Zero | Succ ordinal | Limit "nat \ ordinal" - -consts - pred :: "ordinal \ nat \ ordinal option" -primrec - "pred Zero n = None" - "pred (Succ a) n = Some a" - "pred (Limit f) n = Some (f n)" - -constdefs - OpLim :: "(nat \ (ordinal \ ordinal)) \ (ordinal \ ordinal)" - "OpLim F a \ Limit (\n. F n a)" - OpItw :: "(ordinal \ ordinal) \ (ordinal \ ordinal)" ("\") - "\f \ OpLim (power f)" - -consts - cantor :: "ordinal \ ordinal \ ordinal" -primrec - "cantor a Zero = Succ a" - "cantor a (Succ b) = \(\x. cantor x b) a" - "cantor a (Limit f) = Limit (\n. cantor a (f n))" - -consts - Nabla :: "(ordinal \ ordinal) \ (ordinal \ ordinal)" ("\") -primrec - "\f Zero = f Zero" - "\f (Succ a) = f (Succ (\f a))" - "\f (Limit h) = Limit (\n. \f (h n))" - -constdefs - deriv :: "(ordinal \ ordinal) \ (ordinal \ ordinal)" - "deriv f \ \(\f)" - -consts - veblen :: "ordinal \ ordinal \ ordinal" -primrec - "veblen Zero = \(OpLim (power (cantor Zero)))" - "veblen (Succ a) = \(OpLim (power (veblen a)))" - "veblen (Limit f) = \(OpLim (\n. veblen (f n)))" - -constdefs - veb :: "ordinal \ ordinal" - "veb a \ veblen a Zero" - epsilon0 :: ordinal ("\\<^sub>0") - "\\<^sub>0 \ veb Zero" - Gamma0 :: ordinal ("\\<^sub>0") - "\\<^sub>0 \ Limit (\n. (veb^n) Zero)" -thm Gamma0_def - -end