diff -r 3f12de2e2e6e -r bc1c75855f3d src/HOL/Complex/NSComplex.thy --- a/src/HOL/Complex/NSComplex.thy Fri Sep 09 17:47:37 2005 +0200 +++ b/src/HOL/Complex/NSComplex.thy Fri Sep 09 19:34:22 2005 +0200 @@ -12,85 +12,52 @@ begin types hcomplex = "complex star" -(* -constdefs - hcomplexrel :: "((nat=>complex)*(nat=>complex)) set" - "hcomplexrel == {p. \X Y. p = ((X::nat=>complex),Y) & - {n::nat. X(n) = Y(n)}: FreeUltrafilterNat}" -typedef hcomplex = "{x::nat=>complex. True}//hcomplexrel" - by (auto simp add: quotient_def) - -instance hcomplex :: "{zero, one, plus, times, minus, inverse, power}" .. - -defs (overloaded) - hcomplex_zero_def: - "0 == Abs_hcomplex(hcomplexrel `` {%n. (0::complex)})" - - hcomplex_one_def: - "1 == Abs_hcomplex(hcomplexrel `` {%n. (1::complex)})" - - - hcomplex_minus_def: - "- z == Abs_hcomplex(UN X: Rep_hcomplex(z). - hcomplexrel `` {%n::nat. - (X n)})" - - hcomplex_diff_def: - "w - z == w + -(z::hcomplex)" - - hcinv_def: - "inverse(P) == Abs_hcomplex(UN X: Rep_hcomplex(P). - hcomplexrel `` {%n. inverse(X n)})" -*) +syntax hcomplex_of_complex :: "real => real star" +translations "hcomplex_of_complex" => "star_of :: complex => complex star" constdefs - hcomplex_of_complex :: "complex => hcomplex" -(* "hcomplex_of_complex z == Abs_star(starrel `` {%n. z})"*) - "hcomplex_of_complex z == star_of z" - (*--- real and Imaginary parts ---*) hRe :: "hcomplex => hypreal" - "hRe(z) == Abs_star(UN X:Rep_star(z). starrel `` {%n. Re (X n)})" + "hRe(z) == ( *f* Re) z" hIm :: "hcomplex => hypreal" - "hIm(z) == Abs_star(UN X:Rep_star(z). starrel `` {%n. Im (X n)})" + "hIm(z) == ( *f* Im) z" (*----------- modulus ------------*) hcmod :: "hcomplex => hypreal" - "hcmod z == Abs_star(UN X: Rep_star(z). - starrel `` {%n. cmod (X n)})" + "hcmod z == ( *f* cmod) z" (*------ imaginary unit ----------*) iii :: hcomplex - "iii == Abs_star(starrel `` {%n. ii})" + "iii == star_of ii" (*------- complex conjugate ------*) hcnj :: "hcomplex => hcomplex" - "hcnj z == Abs_star(UN X:Rep_star(z). starrel `` {%n. cnj (X n)})" + "hcnj z == ( *f* cnj) z" (*------------ Argand -------------*) hsgn :: "hcomplex => hcomplex" - "hsgn z == Abs_star(UN X:Rep_star(z). starrel `` {%n. sgn(X n)})" + "hsgn z == ( *f* sgn) z" harg :: "hcomplex => hypreal" - "harg z == Abs_star(UN X:Rep_star(z). starrel `` {%n. arg(X n)})" + "harg z == ( *f* arg) z" (* abbreviation for (cos a + i sin a) *) hcis :: "hypreal => hcomplex" - "hcis a == Abs_star(UN X:Rep_star(a). starrel `` {%n. cis (X n)})" + "hcis a == ( *f* cis) a" (*----- injection from hyperreals -----*) hcomplex_of_hypreal :: "hypreal => hcomplex" - "hcomplex_of_hypreal r == Abs_star(UN X:Rep_star(r). - starrel `` {%n. complex_of_real (X n)})" + "hcomplex_of_hypreal r == ( *f* complex_of_real) r" (* abbreviation for r*(cos a + i sin a) *) hrcis :: "[hypreal, hypreal] => hcomplex" @@ -104,225 +71,63 @@ constdefs HComplex :: "[hypreal,hypreal] => hcomplex" - "HComplex x y == hcomplex_of_hypreal x + iii * hcomplex_of_hypreal y" - -(* -defs (overloaded) -*) - (*----------- division ----------*) -(* - hcomplex_divide_def: - "w / (z::hcomplex) == w * inverse z" - - hcomplex_add_def: - "w + z == Abs_star(UN X:Rep_star(w). UN Y:Rep_star(z). - starrel `` {%n. X n + Y n})" - - hcomplex_mult_def: - "w * z == Abs_star(UN X:Rep_star(w). UN Y:Rep_star(z). - starrel `` {%n. X n * Y n})" -*) +(* "HComplex x y == hcomplex_of_hypreal x + iii * hcomplex_of_hypreal y"*) + "HComplex == Ifun2_of Complex" consts - "hcpow" :: "[hcomplex,hypnat] => hcomplex" (infixr 80) + "hcpow" :: "[hcomplex,hypnat] => hcomplex" (infixr "hcpow" 80) defs (* hypernatural powers of nonstandard complex numbers *) hcpow_def: "(z::hcomplex) hcpow (n::hypnat) - == Abs_star(UN X:Rep_star(z). UN Y: Rep_star(n). - starrel `` {%n. (X n) ^ (Y n)})" + == Ifun2_of (op ^) z n" subsection{*Properties of Nonstandard Real and Imaginary Parts*} -lemma hRe: - "hRe(Abs_star (starrel `` {X})) = - Abs_star(starrel `` {%n. Re(X n)})" -apply (simp add: hRe_def) -apply (rule_tac f = Abs_star in arg_cong) -apply (auto iff: starrel_iff, ultra) -done +lemma hRe: "hRe (star_n X) = star_n (%n. Re(X n))" +by (simp add: hRe_def starfun) -lemma hIm: - "hIm(Abs_star (starrel `` {X})) = - Abs_star(starrel `` {%n. Im(X n)})" -apply (simp add: hIm_def) -apply (rule_tac f = Abs_star in arg_cong) -apply (auto iff: starrel_iff, ultra) -done +lemma hIm: "hIm (star_n X) = star_n (%n. Im(X n))" +by (simp add: hIm_def starfun) lemma hcomplex_hRe_hIm_cancel_iff: - "(w=z) = (hRe(w) = hRe(z) & hIm(w) = hIm(z))" -apply (rule_tac z=z in eq_Abs_star, rule_tac z=w in eq_Abs_star) -apply (auto simp add: hRe hIm complex_Re_Im_cancel_iff iff: starrel_iff) -apply (ultra+) -done + "!!w z. (w=z) = (hRe(w) = hRe(z) & hIm(w) = hIm(z))" +by (unfold hRe_def hIm_def, transfer, rule complex_Re_Im_cancel_iff) lemma hcomplex_equality [intro?]: "hRe z = hRe w ==> hIm z = hIm w ==> z = w" -by (simp add: hcomplex_hRe_hIm_cancel_iff) +by (simp add: hcomplex_hRe_hIm_cancel_iff) lemma hcomplex_hRe_zero [simp]: "hRe 0 = 0" -by (simp add: hRe hypreal_zero_num) +by (simp add: hRe star_n_zero_num) lemma hcomplex_hIm_zero [simp]: "hIm 0 = 0" -by (simp add: hIm hypreal_zero_num) +by (simp add: hIm star_n_zero_num) lemma hcomplex_hRe_one [simp]: "hRe 1 = 1" -by (simp add: hRe hypreal_one_num) +by (simp add: hRe star_n_one_num) lemma hcomplex_hIm_one [simp]: "hIm 1 = 0" -by (simp add: hIm hypreal_one_def hypreal_zero_num) +by (simp add: hIm star_n_one_num star_n_zero_num) subsection{*Addition for Nonstandard Complex Numbers*} -(* -lemma hcomplex_add_congruent2: - "congruent2 starrel starrel (%X Y. starrel `` {%n. X n + Y n})" -by (auto simp add: congruent2_def iff: starrel_iff, ultra) -*) -lemma hcomplex_add: - "Abs_star(starrel``{%n. X n}) + - Abs_star(starrel``{%n. Y n}) = - Abs_star(starrel``{%n. X n + Y n})" -by (rule hypreal_add) - -lemma hcomplex_add_commute: "(z::hcomplex) + w = w + z" -by (rule add_commute) - -lemma hcomplex_add_assoc: "((z1::hcomplex) + z2) + z3 = z1 + (z2 + z3)" -by (rule add_assoc) - -lemma hcomplex_add_zero_left: "(0::hcomplex) + z = z" -by simp - -lemma hcomplex_add_zero_right: "z + (0::hcomplex) = z" -by simp - -lemma hRe_add: "hRe(x + y) = hRe(x) + hRe(y)" -apply (rule_tac z=x in eq_Abs_star, rule_tac z=y in eq_Abs_star) -apply (simp add: hRe hcomplex_add hypreal_add complex_Re_add) -done - -lemma hIm_add: "hIm(x + y) = hIm(x) + hIm(y)" -apply (rule_tac z=x in eq_Abs_star, rule_tac z=y in eq_Abs_star) -apply (simp add: hIm hcomplex_add hypreal_add complex_Im_add) -done - - -subsection{*Additive Inverse on Nonstandard Complex Numbers*} -(* -lemma hcomplex_minus_congruent: - "(%X. starrel `` {%n. - (X n)}) respects starrel" -by (simp add: congruent_def) -*) -lemma hcomplex_minus: - "- (Abs_star(starrel `` {%n. X n})) = - Abs_star(starrel `` {%n. -(X n)})" -by (rule hypreal_minus) - -lemma hcomplex_add_minus_left: "-z + z = (0::hcomplex)" -by simp - - -subsection{*Multiplication for Nonstandard Complex Numbers*} - -lemma hcomplex_mult: - "Abs_star(starrel``{%n. X n}) * - Abs_star(starrel``{%n. Y n}) = - Abs_star(starrel``{%n. X n * Y n})" -by (rule hypreal_mult) - -lemma hcomplex_mult_commute: "(w::hcomplex) * z = z * w" -by (rule mult_commute) - -lemma hcomplex_mult_assoc: "((u::hcomplex) * v) * w = u * (v * w)" -by (rule mult_assoc) - -lemma hcomplex_mult_one_left: "(1::hcomplex) * z = z" -by (rule mult_1_left) -lemma hcomplex_mult_zero_left: "(0::hcomplex) * z = 0" -by (rule mult_zero_left) - -lemma hcomplex_add_mult_distrib: - "((z1::hcomplex) + z2) * w = (z1 * w) + (z2 * w)" -by (rule left_distrib) - -lemma hcomplex_zero_not_eq_one: "(0::hcomplex) \ (1::hcomplex)" -by (rule zero_neq_one) - -declare hcomplex_zero_not_eq_one [THEN not_sym, simp] - - -subsection{*Inverse of Nonstandard Complex Number*} - -lemma hcomplex_inverse: - "inverse (Abs_star(starrel `` {%n. X n})) = - Abs_star(starrel `` {%n. inverse (X n)})" -apply (fold star_n_def) -apply (simp add: star_inverse_def Ifun_of_def star_of_def Ifun_star_n) -done - -lemma hcomplex_mult_inv_left: - "z \ (0::hcomplex) ==> inverse(z) * z = (1::hcomplex)" -apply (rule_tac z=z in eq_Abs_star) -apply (simp add: hypreal_zero_def hypreal_one_def hcomplex_inverse hcomplex_mult, ultra) -apply (rule ccontr) -apply (drule left_inverse, auto) -done +lemma hRe_add: "!!x y. hRe(x + y) = hRe(x) + hRe(y)" +by (unfold hRe_def, transfer, rule complex_Re_add) -subsection {* The Field of Nonstandard Complex Numbers *} -(* -instance hcomplex :: field -proof - fix z u v w :: hcomplex - show "(u + v) + w = u + (v + w)" - by (simp add: hcomplex_add_assoc) - show "z + w = w + z" - by (simp add: hcomplex_add_commute) - show "0 + z = z" - by (simp add: hcomplex_add_zero_left) - show "-z + z = 0" - by (simp add: hcomplex_add_minus_left) - show "z - w = z + -w" - by (simp add: hcomplex_diff_def) - show "(u * v) * w = u * (v * w)" - by (simp add: hcomplex_mult_assoc) - show "z * w = w * z" - by (simp add: hcomplex_mult_commute) - show "1 * z = z" - by (simp add: hcomplex_mult_one_left) - show "0 \ (1::hcomplex)" - by (rule hcomplex_zero_not_eq_one) - show "(u + v) * w = u * w + v * w" - by (simp add: hcomplex_add_mult_distrib) - show "z / w = z * inverse w" - by (simp add: hcomplex_divide_def) - assume "w \ 0" - thus "inverse w * w = 1" - by (rule hcomplex_mult_inv_left) -qed - -instance hcomplex :: division_by_zero -proof - show "inverse 0 = (0::hcomplex)" - by (simp add: hcomplex_inverse hcomplex_zero_def) -qed -*) +lemma hIm_add: "!!x y. hIm(x + y) = hIm(x) + hIm(y)" +by (unfold hIm_def, transfer, rule complex_Im_add) subsection{*More Minus Laws*} -lemma hRe_minus: "hRe(-z) = - hRe(z)" -apply (rule_tac z=z in eq_Abs_star) -apply (simp add: hRe hcomplex_minus hypreal_minus complex_Re_minus) -done +lemma hRe_minus: "!!z. hRe(-z) = - hRe(z)" +by (unfold hRe_def, transfer, rule complex_Re_minus) -lemma hIm_minus: "hIm(-z) = - hIm(z)" -apply (rule_tac z=z in eq_Abs_star) -apply (simp add: hIm hcomplex_minus hypreal_minus complex_Im_minus) -done +lemma hIm_minus: "!!z. hIm(-z) = - hIm(z)" +by (unfold hIm_def, transfer, rule complex_Im_minus) lemma hcomplex_add_minus_eq_minus: "x + y = (0::hcomplex) ==> x = -y" @@ -331,25 +136,22 @@ done lemma hcomplex_i_mult_eq [simp]: "iii * iii = - 1" -by (simp add: iii_def hcomplex_mult hypreal_one_def hcomplex_minus) +by (simp add: iii_def star_of_def star_n_mult star_n_one_num star_n_minus) lemma hcomplex_i_mult_left [simp]: "iii * (iii * z) = -z" by (simp add: mult_assoc [symmetric]) lemma hcomplex_i_not_zero [simp]: "iii \ 0" -by (simp add: iii_def hypreal_zero_def) +by (simp add: iii_def star_of_def star_n_zero_num star_n_eq_iff) subsection{*More Multiplication Laws*} -lemma hcomplex_mult_one_right: "z * (1::hcomplex) = z" -by (rule OrderedGroup.mult_1_right) - lemma hcomplex_mult_minus_one [simp]: "- 1 * (z::hcomplex) = -z" by simp lemma hcomplex_mult_minus_one_right [simp]: "(z::hcomplex) * - 1 = -z" -by (subst hcomplex_mult_commute, simp) +by simp lemma hcomplex_mult_left_cancel: "(c::hcomplex) \ (0::hcomplex) ==> (c*a=c*b) = (a=b)" @@ -362,11 +164,6 @@ subsection{*Subraction and Division*} -lemma hcomplex_diff: - "Abs_star(starrel``{%n. X n}) - Abs_star(starrel``{%n. Y n}) = - Abs_star(starrel``{%n. X n - Y n})" -by (rule hypreal_diff) - lemma hcomplex_diff_eq_eq [simp]: "((x::hcomplex) - y = z) = (x = z + y)" by (rule OrderedGroup.diff_eq_eq) @@ -377,92 +174,78 @@ subsection{*Embedding Properties for @{term hcomplex_of_hypreal} Map*} lemma hcomplex_of_hypreal: - "hcomplex_of_hypreal (Abs_star(starrel `` {%n. X n})) = - Abs_star(starrel `` {%n. complex_of_real (X n)})" -apply (simp add: hcomplex_of_hypreal_def) -apply (rule_tac f = Abs_star in arg_cong, auto iff: starrel_iff, ultra) -done + "hcomplex_of_hypreal (star_n X) = star_n (%n. complex_of_real (X n))" +by (simp add: hcomplex_of_hypreal_def starfun) lemma hcomplex_of_hypreal_cancel_iff [iff]: - "(hcomplex_of_hypreal x = hcomplex_of_hypreal y) = (x = y)" -apply (rule_tac z=x in eq_Abs_star, rule_tac z=y in eq_Abs_star) -apply (simp add: hcomplex_of_hypreal) -done + "!!x y. (hcomplex_of_hypreal x = hcomplex_of_hypreal y) = (x = y)" +by (unfold hcomplex_of_hypreal_def, transfer, simp) lemma hcomplex_of_hypreal_one [simp]: "hcomplex_of_hypreal 1 = 1" -by (simp add: hypreal_one_def hcomplex_of_hypreal hypreal_one_num) +by (simp add: hcomplex_of_hypreal star_n_one_num) lemma hcomplex_of_hypreal_zero [simp]: "hcomplex_of_hypreal 0 = 0" -by (simp add: hypreal_zero_def hypreal_zero_def hcomplex_of_hypreal) +by (simp add: star_n_zero_num hcomplex_of_hypreal) lemma hcomplex_of_hypreal_minus [simp]: - "hcomplex_of_hypreal(-x) = - hcomplex_of_hypreal x" -apply (rule_tac z=x in eq_Abs_star) -apply (simp add: hcomplex_of_hypreal hcomplex_minus hypreal_minus) -done + "!!x. hcomplex_of_hypreal(-x) = - hcomplex_of_hypreal x" +by (unfold hcomplex_of_hypreal_def, transfer, simp) lemma hcomplex_of_hypreal_inverse [simp]: - "hcomplex_of_hypreal(inverse x) = inverse(hcomplex_of_hypreal x)" -apply (rule_tac z=x in eq_Abs_star) -apply (simp add: hcomplex_of_hypreal hypreal_inverse hcomplex_inverse) -done + "!!x. hcomplex_of_hypreal(inverse x) = inverse(hcomplex_of_hypreal x)" +by (unfold hcomplex_of_hypreal_def, transfer, simp) lemma hcomplex_of_hypreal_add [simp]: - "hcomplex_of_hypreal (x + y) = hcomplex_of_hypreal x + hcomplex_of_hypreal y" -apply (rule_tac z=x in eq_Abs_star, rule_tac z=y in eq_Abs_star) -apply (simp add: hcomplex_of_hypreal hypreal_add hcomplex_add) -done + "!!x y. hcomplex_of_hypreal (x + y) = + hcomplex_of_hypreal x + hcomplex_of_hypreal y" +by (unfold hcomplex_of_hypreal_def, transfer, simp) lemma hcomplex_of_hypreal_diff [simp]: - "hcomplex_of_hypreal (x - y) = + "!!x y. hcomplex_of_hypreal (x - y) = hcomplex_of_hypreal x - hcomplex_of_hypreal y " -by (simp add: hypreal_diff_def) +by (unfold hcomplex_of_hypreal_def, transfer, simp) lemma hcomplex_of_hypreal_mult [simp]: - "hcomplex_of_hypreal (x * y) = hcomplex_of_hypreal x * hcomplex_of_hypreal y" -apply (rule_tac z=x in eq_Abs_star, rule_tac z=y in eq_Abs_star) -apply (simp add: hcomplex_of_hypreal hypreal_mult hcomplex_mult) -done + "!!x y. hcomplex_of_hypreal (x * y) = + hcomplex_of_hypreal x * hcomplex_of_hypreal y" +by (unfold hcomplex_of_hypreal_def, transfer, simp) lemma hcomplex_of_hypreal_divide [simp]: - "hcomplex_of_hypreal(x/y) = hcomplex_of_hypreal x / hcomplex_of_hypreal y" -by (simp add: divide_inverse) + "!!x y. hcomplex_of_hypreal(x/y) = + hcomplex_of_hypreal x / hcomplex_of_hypreal y" +by (unfold hcomplex_of_hypreal_def, transfer, simp) lemma hRe_hcomplex_of_hypreal [simp]: "hRe(hcomplex_of_hypreal z) = z" -apply (rule_tac z=z in eq_Abs_star) -apply (auto simp add: hcomplex_of_hypreal hRe) +apply (cases z) +apply (simp add: hcomplex_of_hypreal hRe) done lemma hIm_hcomplex_of_hypreal [simp]: "hIm(hcomplex_of_hypreal z) = 0" -apply (rule_tac z=z in eq_Abs_star) -apply (auto simp add: hcomplex_of_hypreal hIm hypreal_zero_num) +apply (cases z) +apply (simp add: hcomplex_of_hypreal hIm star_n_zero_num) done lemma hcomplex_of_hypreal_epsilon_not_zero [simp]: "hcomplex_of_hypreal epsilon \ 0" -by (auto simp add: hcomplex_of_hypreal epsilon_def star_n_def hypreal_zero_def) +by (simp add: hcomplex_of_hypreal epsilon_def star_n_zero_num star_n_eq_iff) subsection{*HComplex theorems*} -lemma hRe_HComplex [simp]: "hRe (HComplex x y) = x" -apply (rule_tac z=x in eq_Abs_star, rule_tac z=y in eq_Abs_star) -apply (simp add: HComplex_def hRe iii_def hcomplex_add hcomplex_mult hcomplex_of_hypreal) -done +lemma hRe_HComplex [simp]: "!!x y. hRe (HComplex x y) = x" +by (unfold hRe_def HComplex_def, transfer, simp) -lemma hIm_HComplex [simp]: "hIm (HComplex x y) = y" -apply (rule_tac z=x in eq_Abs_star, rule_tac z=y in eq_Abs_star) -apply (simp add: HComplex_def hIm iii_def hcomplex_add hcomplex_mult hcomplex_of_hypreal) -done +lemma hIm_HComplex [simp]: "!!x y. hIm (HComplex x y) = y" +by (unfold hIm_def HComplex_def, transfer, simp) text{*Relates the two nonstandard constructions*} lemma HComplex_eq_Abs_star_Complex: - "HComplex (Abs_star (starrel `` {X})) (Abs_star (starrel `` {Y})) = - Abs_star(starrel `` {%n::nat. Complex (X n) (Y n)})"; -by (simp add: hcomplex_hRe_hIm_cancel_iff hRe hIm) + "HComplex (star_n X) (star_n Y) = + star_n (%n::nat. Complex (X n) (Y n))" +by (simp add: hcomplex_hRe_hIm_cancel_iff hRe hIm) lemma hcomplex_surj [simp]: "HComplex (hRe z) (hIm z) = z" -by (simp add: hcomplex_equality) +by (simp add: hcomplex_equality) lemma hcomplex_induct [case_names rect(*, induct type: hcomplex*)]: "(\x y. P (HComplex x y)) ==> P z" @@ -471,24 +254,18 @@ subsection{*Modulus (Absolute Value) of Nonstandard Complex Number*} -lemma hcmod: - "hcmod (Abs_star(starrel `` {%n. X n})) = - Abs_star(starrel `` {%n. cmod (X n)})" - -apply (simp add: hcmod_def) -apply (rule_tac f = Abs_star in arg_cong) -apply (auto iff: starrel_iff, ultra) -done +lemma hcmod: "hcmod (star_n X) = star_n (%n. cmod (X n))" +by (simp add: hcmod_def starfun) lemma hcmod_zero [simp]: "hcmod(0) = 0" -by (simp add: hypreal_zero_def hypreal_zero_def hcmod) +by (simp add: star_n_zero_num hcmod) lemma hcmod_one [simp]: "hcmod(1) = 1" -by (simp add: hypreal_one_def hcmod hypreal_one_num) +by (simp add: hcmod star_n_one_num) lemma hcmod_hcomplex_of_hypreal [simp]: "hcmod(hcomplex_of_hypreal x) = abs x" -apply (rule_tac z=x in eq_Abs_star) -apply (auto simp add: hcmod hcomplex_of_hypreal hypreal_hrabs) +apply (cases x) +apply (auto simp add: hcmod hcomplex_of_hypreal star_n_abs) done lemma hcomplex_of_hypreal_abs: @@ -496,36 +273,32 @@ hcomplex_of_hypreal(hcmod(hcomplex_of_hypreal x))" by simp -lemma HComplex_inject [simp]: "HComplex x y = HComplex x' y' = (x=x' & y=y')" -apply (rule iffI) - prefer 2 apply simp -apply (simp add: HComplex_def iii_def) -apply (rule_tac z=x in eq_Abs_star, rule_tac z=y in eq_Abs_star, - rule_tac z=x' in eq_Abs_star, rule_tac z=y' in eq_Abs_star) -apply (auto simp add: iii_def hcomplex_mult hcomplex_add hcomplex_of_hypreal) -apply (ultra+) -done +lemma HComplex_inject [simp]: + "!!x y x' y'. HComplex x y = HComplex x' y' = (x=x' & y=y')" +by (unfold HComplex_def, transfer, simp) lemma HComplex_add [simp]: - "HComplex x1 y1 + HComplex x2 y2 = HComplex (x1+x2) (y1+y2)" -by (simp add: HComplex_def add_ac right_distrib) + "!!x1 y1 x2 y2. HComplex x1 y1 + HComplex x2 y2 = HComplex (x1+x2) (y1+y2)" +by (unfold HComplex_def, transfer, simp) -lemma HComplex_minus [simp]: "- HComplex x y = HComplex (-x) (-y)" -by (simp add: HComplex_def hcomplex_of_hypreal_minus) +lemma HComplex_minus [simp]: "!!x y. - HComplex x y = HComplex (-x) (-y)" +by (unfold HComplex_def, transfer, simp) lemma HComplex_diff [simp]: - "HComplex x1 y1 - HComplex x2 y2 = HComplex (x1-x2) (y1-y2)" -by (simp add: diff_minus) + "!!x1 y1 x2 y2. HComplex x1 y1 - HComplex x2 y2 = HComplex (x1-x2) (y1-y2)" +by (unfold HComplex_def, transfer, rule complex_diff) lemma HComplex_mult [simp]: - "HComplex x1 y1 * HComplex x2 y2 = HComplex (x1*x2 - y1*y2) (x1*y2 + y1*x2)" -by (simp add: HComplex_def diff_minus hcomplex_of_hypreal_minus - add_ac mult_ac right_distrib) + "!!x1 y1 x2 y2. HComplex x1 y1 * HComplex x2 y2 = + HComplex (x1*x2 - y1*y2) (x1*y2 + y1*x2)" +by (unfold HComplex_def, transfer, rule complex_mult) (*HComplex_inverse is proved below*) -lemma hcomplex_of_hypreal_eq: "hcomplex_of_hypreal r = HComplex r 0" -by (simp add: HComplex_def) +lemma hcomplex_of_hypreal_eq: "!!r. hcomplex_of_hypreal r = HComplex r 0" +apply (unfold hcomplex_of_hypreal_def HComplex_def, transfer) +apply (simp add: complex_of_real_def) +done lemma HComplex_add_hcomplex_of_hypreal [simp]: "HComplex x y + hcomplex_of_hypreal r = HComplex (x+r) y" @@ -544,226 +317,149 @@ by (simp add: i_def hcomplex_of_hypreal_eq) lemma i_hcomplex_of_hypreal [simp]: - "iii * hcomplex_of_hypreal r = HComplex 0 r" -by (simp add: HComplex_def) + "!!r. iii * hcomplex_of_hypreal r = HComplex 0 r" +by (unfold iii_def hcomplex_of_hypreal_def HComplex_def, transfer, rule i_complex_of_real) lemma hcomplex_of_hypreal_i [simp]: - "hcomplex_of_hypreal r * iii = HComplex 0 r" -by (simp add: mult_commute) + "!!r. hcomplex_of_hypreal r * iii = HComplex 0 r" +by (unfold iii_def hcomplex_of_hypreal_def HComplex_def, transfer, rule complex_of_real_i) subsection{*Conjugation*} -lemma hcnj: - "hcnj (Abs_star(starrel `` {%n. X n})) = - Abs_star(starrel `` {%n. cnj(X n)})" -apply (simp add: hcnj_def) -apply (rule_tac f = Abs_star in arg_cong) -apply (auto iff: starrel_iff, ultra) -done +lemma hcnj: "hcnj (star_n X) = star_n (%n. cnj(X n))" +by (simp add: hcnj_def starfun) -lemma hcomplex_hcnj_cancel_iff [iff]: "(hcnj x = hcnj y) = (x = y)" -apply (rule_tac z=x in eq_Abs_star, rule_tac z=y in eq_Abs_star) -apply (simp add: hcnj) -done +lemma hcomplex_hcnj_cancel_iff [iff]: "!!x y. (hcnj x = hcnj y) = (x = y)" +by (unfold hcnj_def, transfer, rule complex_cnj_cancel_iff) -lemma hcomplex_hcnj_hcnj [simp]: "hcnj (hcnj z) = z" -apply (rule_tac z=z in eq_Abs_star) -apply (simp add: hcnj) -done +lemma hcomplex_hcnj_hcnj [simp]: "!!z. hcnj (hcnj z) = z" +by (unfold hcnj_def, transfer, rule complex_cnj_cnj) lemma hcomplex_hcnj_hcomplex_of_hypreal [simp]: - "hcnj (hcomplex_of_hypreal x) = hcomplex_of_hypreal x" -apply (rule_tac z=x in eq_Abs_star) -apply (simp add: hcnj hcomplex_of_hypreal) -done + "!!x. hcnj (hcomplex_of_hypreal x) = hcomplex_of_hypreal x" +by (unfold hcnj_def hcomplex_of_hypreal_def, transfer, rule complex_cnj_complex_of_real) + +lemma hcomplex_hmod_hcnj [simp]: "!!z. hcmod (hcnj z) = hcmod z" +by (unfold hcmod_def hcnj_def, transfer, rule complex_mod_cnj) -lemma hcomplex_hmod_hcnj [simp]: "hcmod (hcnj z) = hcmod z" -apply (rule_tac z=z in eq_Abs_star) -apply (simp add: hcnj hcmod) -done +lemma hcomplex_hcnj_minus: "!!z. hcnj (-z) = - hcnj z" +by (unfold hcnj_def, transfer, rule complex_cnj_minus) -lemma hcomplex_hcnj_minus: "hcnj (-z) = - hcnj z" -apply (rule_tac z=z in eq_Abs_star) -apply (simp add: hcnj hcomplex_minus complex_cnj_minus) -done +lemma hcomplex_hcnj_inverse: "!!z. hcnj(inverse z) = inverse(hcnj z)" +by (unfold hcnj_def, transfer, rule complex_cnj_inverse) -lemma hcomplex_hcnj_inverse: "hcnj(inverse z) = inverse(hcnj z)" -apply (rule_tac z=z in eq_Abs_star) -apply (simp add: hcnj hcomplex_inverse complex_cnj_inverse) -done +lemma hcomplex_hcnj_add: "!!w z. hcnj(w + z) = hcnj(w) + hcnj(z)" +by (unfold hcnj_def, transfer, rule complex_cnj_add) -lemma hcomplex_hcnj_add: "hcnj(w + z) = hcnj(w) + hcnj(z)" -apply (rule_tac z=z in eq_Abs_star, rule_tac z=w in eq_Abs_star) -apply (simp add: hcnj hcomplex_add complex_cnj_add) -done +lemma hcomplex_hcnj_diff: "!!w z. hcnj(w - z) = hcnj(w) - hcnj(z)" +by (unfold hcnj_def, transfer, rule complex_cnj_diff) -lemma hcomplex_hcnj_diff: "hcnj(w - z) = hcnj(w) - hcnj(z)" -apply (rule_tac z=z in eq_Abs_star, rule_tac z=w in eq_Abs_star) -apply (simp add: hcnj hcomplex_diff complex_cnj_diff) -done +lemma hcomplex_hcnj_mult: "!!w z. hcnj(w * z) = hcnj(w) * hcnj(z)" +by (unfold hcnj_def, transfer, rule complex_cnj_mult) -lemma hcomplex_hcnj_mult: "hcnj(w * z) = hcnj(w) * hcnj(z)" -apply (rule_tac z=z in eq_Abs_star, rule_tac z=w in eq_Abs_star) -apply (simp add: hcnj hcomplex_mult complex_cnj_mult) -done - -lemma hcomplex_hcnj_divide: "hcnj(w / z) = (hcnj w)/(hcnj z)" -by (simp add: divide_inverse hcomplex_hcnj_mult hcomplex_hcnj_inverse) +lemma hcomplex_hcnj_divide: "!!w z. hcnj(w / z) = (hcnj w)/(hcnj z)" +by (unfold hcnj_def, transfer, rule complex_cnj_divide) lemma hcnj_one [simp]: "hcnj 1 = 1" -by (simp add: hypreal_one_def hcnj) +by (unfold hcnj_def, transfer, rule complex_cnj_one) lemma hcomplex_hcnj_zero [simp]: "hcnj 0 = 0" -by (simp add: hypreal_zero_def hcnj) +by (unfold hcnj_def, transfer, rule complex_cnj_zero) -lemma hcomplex_hcnj_zero_iff [iff]: "(hcnj z = 0) = (z = 0)" -apply (rule_tac z=z in eq_Abs_star) -apply (simp add: hypreal_zero_def hcnj) -done +lemma hcomplex_hcnj_zero_iff [iff]: "!!z. (hcnj z = 0) = (z = 0)" +by (unfold hcnj_def, transfer, rule complex_cnj_zero_iff) lemma hcomplex_mult_hcnj: - "z * hcnj z = hcomplex_of_hypreal (hRe(z) ^ 2 + hIm(z) ^ 2)" -apply (rule_tac z=z in eq_Abs_star) -apply (simp add: hcnj hcomplex_mult hcomplex_of_hypreal hRe hIm hypreal_add - hypreal_mult complex_mult_cnj numeral_2_eq_2) + "!!z. z * hcnj z = hcomplex_of_hypreal (hRe(z) ^ 2 + hIm(z) ^ 2)" +apply (unfold hcnj_def hcomplex_of_hypreal_def hRe_def hIm_def) +apply (transfer, rule complex_mult_cnj) done subsection{*More Theorems about the Function @{term hcmod}*} -lemma hcomplex_hcmod_eq_zero_cancel [simp]: "(hcmod x = 0) = (x = 0)" -apply (rule_tac z=x in eq_Abs_star) -apply (simp add: hcmod hypreal_zero_def hypreal_zero_num) -done +lemma hcomplex_hcmod_eq_zero_cancel [simp]: "!!x. (hcmod x = 0) = (x = 0)" +by (unfold hcmod_def, transfer, rule complex_mod_eq_zero_cancel) lemma hcmod_hcomplex_of_hypreal_of_nat [simp]: "hcmod (hcomplex_of_hypreal(hypreal_of_nat n)) = hypreal_of_nat n" -apply (simp add: abs_if linorder_not_less) -done +by (simp add: abs_if linorder_not_less) lemma hcmod_hcomplex_of_hypreal_of_hypnat [simp]: "hcmod (hcomplex_of_hypreal(hypreal_of_hypnat n)) = hypreal_of_hypnat n" -apply (simp add: abs_if linorder_not_less) -done +by (simp add: abs_if linorder_not_less) -lemma hcmod_minus [simp]: "hcmod (-x) = hcmod(x)" -apply (rule_tac z=x in eq_Abs_star) -apply (simp add: hcmod hcomplex_minus) -done +lemma hcmod_minus [simp]: "!!x. hcmod (-x) = hcmod(x)" +by (unfold hcmod_def, transfer, rule complex_mod_minus) -lemma hcmod_mult_hcnj: "hcmod(z * hcnj(z)) = hcmod(z) ^ 2" -apply (rule_tac z=z in eq_Abs_star) -apply (simp add: hcmod hcomplex_mult hcnj hypreal_mult complex_mod_mult_cnj numeral_2_eq_2) -done +lemma hcmod_mult_hcnj: "!!z. hcmod(z * hcnj(z)) = hcmod(z) ^ 2" +by (unfold hcmod_def hcnj_def, transfer, rule complex_mod_mult_cnj) -lemma hcmod_ge_zero [simp]: "(0::hypreal) \ hcmod x" -apply (rule_tac z=x in eq_Abs_star) -apply (simp add: hcmod hypreal_zero_num hypreal_le) -done +lemma hcmod_ge_zero [simp]: "!!x. (0::hypreal) \ hcmod x" +by (unfold hcmod_def, transfer, rule complex_mod_ge_zero) lemma hrabs_hcmod_cancel [simp]: "abs(hcmod x) = hcmod x" by (simp add: abs_if linorder_not_less) -lemma hcmod_mult: "hcmod(x*y) = hcmod(x) * hcmod(y)" -apply (rule_tac z=x in eq_Abs_star, rule_tac z=y in eq_Abs_star) -apply (simp add: hcmod hcomplex_mult hypreal_mult complex_mod_mult) -done +lemma hcmod_mult: "!!x y. hcmod(x*y) = hcmod(x) * hcmod(y)" +by (unfold hcmod_def, transfer, rule complex_mod_mult) lemma hcmod_add_squared_eq: - "hcmod(x + y) ^ 2 = hcmod(x) ^ 2 + hcmod(y) ^ 2 + 2 * hRe(x * hcnj y)" -apply (rule_tac z=x in eq_Abs_star, rule_tac z=y in eq_Abs_star) -apply (simp add: hcmod hcomplex_add hypreal_mult hRe hcnj hcomplex_mult - numeral_2_eq_2 realpow_two [symmetric] - del: realpow_Suc) -apply (simp add: numeral_2_eq_2 [symmetric] complex_mod_add_squared_eq - hypreal_add [symmetric] hypreal_mult [symmetric] - star_n_def [symmetric] star_of_def [symmetric] - hypreal_of_real_def [symmetric]) -done + "!!x y. hcmod(x + y) ^ 2 = hcmod(x) ^ 2 + hcmod(y) ^ 2 + 2 * hRe(x * hcnj y)" +by (unfold hcmod_def hcnj_def hRe_def, transfer, rule complex_mod_add_squared_eq) -lemma hcomplex_hRe_mult_hcnj_le_hcmod [simp]: "hRe(x * hcnj y) \ hcmod(x * hcnj y)" -apply (rule_tac z=x in eq_Abs_star, rule_tac z=y in eq_Abs_star) -apply (simp add: hcmod hcnj hcomplex_mult hRe hypreal_le) -done +lemma hcomplex_hRe_mult_hcnj_le_hcmod [simp]: + "!!x y. hRe(x * hcnj y) \ hcmod(x * hcnj y)" +by (unfold hcmod_def hcnj_def hRe_def, transfer, simp) -lemma hcomplex_hRe_mult_hcnj_le_hcmod2 [simp]: "hRe(x * hcnj y) \ hcmod(x * y)" -apply (cut_tac x = x and y = y in hcomplex_hRe_mult_hcnj_le_hcmod) -apply (simp add: hcmod_mult) -done +lemma hcomplex_hRe_mult_hcnj_le_hcmod2 [simp]: + "!!x y. hRe(x * hcnj y) \ hcmod(x * y)" +by (unfold hcmod_def hcnj_def hRe_def, transfer, simp) -lemma hcmod_triangle_squared [simp]: "hcmod (x + y) ^ 2 \ (hcmod(x) + hcmod(y)) ^ 2" -apply (rule_tac z=x in eq_Abs_star, rule_tac z=y in eq_Abs_star) -apply (simp add: hcmod hcnj hcomplex_add hypreal_mult hypreal_add - hypreal_le realpow_two [symmetric] numeral_2_eq_2 - del: realpow_Suc) -apply (simp add: numeral_2_eq_2 [symmetric]) -done +lemma hcmod_triangle_squared [simp]: + "!!x y. hcmod (x + y) ^ 2 \ (hcmod(x) + hcmod(y)) ^ 2" +by (unfold hcmod_def, transfer, simp) -lemma hcmod_triangle_ineq [simp]: "hcmod (x + y) \ hcmod(x) + hcmod(y)" -apply (rule_tac z=x in eq_Abs_star, rule_tac z=y in eq_Abs_star) -apply (simp add: hcmod hcomplex_add hypreal_add hypreal_le) -done +lemma hcmod_triangle_ineq [simp]: + "!!x y. hcmod (x + y) \ hcmod(x) + hcmod(y)" +by (unfold hcmod_def, transfer, simp) -lemma hcmod_triangle_ineq2 [simp]: "hcmod(b + a) - hcmod b \ hcmod a" -apply (cut_tac x1 = b and y1 = a and c = "-hcmod b" in hcmod_triangle_ineq [THEN add_right_mono]) -apply (simp add: add_ac) -done +lemma hcmod_triangle_ineq2 [simp]: + "!!a b. hcmod(b + a) - hcmod b \ hcmod a" +by (unfold hcmod_def, transfer, simp) -lemma hcmod_diff_commute: "hcmod (x - y) = hcmod (y - x)" -apply (rule_tac z=x in eq_Abs_star, rule_tac z=y in eq_Abs_star) -apply (simp add: hcmod hcomplex_diff complex_mod_diff_commute) -done +lemma hcmod_diff_commute: "!!x y. hcmod (x - y) = hcmod (y - x)" +by (unfold hcmod_def, transfer, rule complex_mod_diff_commute) lemma hcmod_add_less: - "[| hcmod x < r; hcmod y < s |] ==> hcmod (x + y) < r + s" -apply (rule_tac z=x in eq_Abs_star, rule_tac z=y in eq_Abs_star) -apply (rule_tac z=r in eq_Abs_star, rule_tac z=s in eq_Abs_star) -apply (simp add: hcmod hcomplex_add hypreal_add hypreal_less, ultra) -apply (auto intro: complex_mod_add_less) -done + "!!x y r s. [| hcmod x < r; hcmod y < s |] ==> hcmod (x + y) < r + s" +by (unfold hcmod_def, transfer, rule complex_mod_add_less) lemma hcmod_mult_less: - "[| hcmod x < r; hcmod y < s |] ==> hcmod (x * y) < r * s" -apply (rule_tac z=x in eq_Abs_star, rule_tac z=y in eq_Abs_star) -apply (rule_tac z=r in eq_Abs_star, rule_tac z=s in eq_Abs_star) -apply (simp add: hcmod hypreal_mult hypreal_less hcomplex_mult, ultra) -apply (auto intro: complex_mod_mult_less) -done + "!!x y r s. [| hcmod x < r; hcmod y < s |] ==> hcmod (x * y) < r * s" +by (unfold hcmod_def, transfer, rule complex_mod_mult_less) -lemma hcmod_diff_ineq [simp]: "hcmod(a) - hcmod(b) \ hcmod(a + b)" -apply (rule_tac z=a in eq_Abs_star, rule_tac z=b in eq_Abs_star) -apply (simp add: hcmod hcomplex_add hypreal_diff hypreal_le) -done +lemma hcmod_diff_ineq [simp]: "!!a b. hcmod(a) - hcmod(b) \ hcmod(a + b)" +by (unfold hcmod_def, transfer, simp) subsection{*A Few Nonlinear Theorems*} -lemma hcpow: - "Abs_star(starrel``{%n. X n}) hcpow - Abs_star(starrel``{%n. Y n}) = - Abs_star(starrel``{%n. X n ^ Y n})" -apply (simp add: hcpow_def) -apply (rule_tac f = Abs_star in arg_cong) -apply (auto iff: starrel_iff, ultra) -done +lemma hcpow: "star_n X hcpow star_n Y = star_n (%n. X n ^ Y n)" +by (simp add: hcpow_def Ifun2_of_def star_of_def Ifun_star_n) lemma hcomplex_of_hypreal_hyperpow: - "hcomplex_of_hypreal (x pow n) = (hcomplex_of_hypreal x) hcpow n" -apply (rule_tac z=x in eq_Abs_star, rule_tac z=n in eq_Abs_star) -apply (simp add: hcomplex_of_hypreal hyperpow hcpow complex_of_real_pow) + "!!x n. hcomplex_of_hypreal (x pow n) = (hcomplex_of_hypreal x) hcpow n" +apply (unfold hcomplex_of_hypreal_def hyperpow_def hcpow_def) +apply (transfer, rule complex_of_real_pow) done -lemma hcmod_hcpow: "hcmod(x hcpow n) = hcmod(x) pow n" -apply (rule_tac z=x in eq_Abs_star, rule_tac z=n in eq_Abs_star) -apply (simp add: hcpow hyperpow hcmod complex_mod_complexpow) -done +lemma hcmod_hcpow: "!!x n. hcmod(x hcpow n) = hcmod(x) pow n" +by (unfold hcmod_def hcpow_def hyperpow_def, transfer, rule complex_mod_complexpow) -lemma hcmod_hcomplex_inverse: "hcmod(inverse x) = inverse(hcmod x)" -apply (case_tac "x = 0", simp) -apply (rule_tac c1 = "hcmod x" in hypreal_mult_left_cancel [THEN iffD1]) -apply (auto simp add: hcmod_mult [symmetric]) -done +lemma hcmod_hcomplex_inverse: "!!x. hcmod(inverse x) = inverse(hcmod x)" +by (unfold hcmod_def, transfer, rule complex_mod_inverse) lemma hcmod_divide: "hcmod(x/y) = hcmod(x)/(hcmod y)" by (simp add: divide_inverse hcmod_mult hcmod_hcomplex_inverse) @@ -777,15 +473,6 @@ lemma hcomplexpow_Suc [simp]: "z ^ (Suc n) = (z::hcomplex) * (z ^ n)" by (rule power_Suc) -(* -instance hcomplex :: recpower -proof - fix z :: hcomplex - fix n :: nat - show "z^0 = 1" by simp - show "z^(Suc n) = z * (z^n)" by simp -qed -*) lemma hcomplexpow_i_squared [simp]: "iii ^ 2 = - 1" by (simp add: power2_eq_square) @@ -807,74 +494,59 @@ done lemma hcpow_minus: - "(-x::hcomplex) hcpow n = - (if ( *pNat* even) n then (x hcpow n) else -(x hcpow n))" -apply (rule_tac z=x in eq_Abs_star, rule_tac z=n in eq_Abs_star) -apply (auto simp add: hcpow hyperpow starPNat hcomplex_minus, ultra) -apply (auto simp add: neg_power_if, ultra) -done + "!!x n. (-x::hcomplex) hcpow n = + (if ( *p* even) n then (x hcpow n) else -(x hcpow n))" +by (unfold hcpow_def, transfer, rule neg_power_if) -lemma hcpow_mult: "((r::hcomplex) * s) hcpow n = (r hcpow n) * (s hcpow n)" -apply (rule_tac z=r in eq_Abs_star, rule_tac z=s in eq_Abs_star) -apply (rule_tac z=n in eq_Abs_star) -apply (simp add: hcpow hypreal_mult hcomplex_mult power_mult_distrib) -done +lemma hcpow_mult: + "!!r s n. ((r::hcomplex) * s) hcpow n = (r hcpow n) * (s hcpow n)" +by (unfold hcpow_def, transfer, rule power_mult_distrib) lemma hcpow_zero [simp]: "0 hcpow (n + 1) = 0" -apply (simp add: hypreal_zero_def hypnat_one_def, rule_tac z=n in eq_Abs_star) -apply (simp add: hcpow hypnat_add) +apply (simp add: star_n_zero_num star_n_one_num, cases n) +apply (simp add: hcpow star_n_add) done lemma hcpow_zero2 [simp]: "0 hcpow (hSuc n) = 0" by (simp add: hSuc_def) lemma hcpow_not_zero [simp,intro]: "r \ 0 ==> r hcpow n \ (0::hcomplex)" -apply (rule_tac z=r in eq_Abs_star, rule_tac z=n in eq_Abs_star) -apply (auto simp add: hcpow hypreal_zero_def, ultra) +apply (cases r, cases n) +apply (auto simp add: hcpow star_n_zero_num star_n_eq_iff, ultra) done lemma hcpow_zero_zero: "r hcpow n = (0::hcomplex) ==> r = 0" by (blast intro: ccontr dest: hcpow_not_zero) -lemma hcomplex_divide: - "Abs_star(starrel``{%n. X n::complex}) / Abs_star(starrel``{%n. Y n}) = - Abs_star(starrel``{%n. X n / Y n})" -by (simp add: divide_inverse complex_divide_def hcomplex_inverse hcomplex_mult) - - - +lemma star_n_divide: "star_n X / star_n Y = star_n (%n. X n / Y n)" +by (simp add: star_divide_def Ifun2_of_def star_of_def Ifun_star_n) subsection{*The Function @{term hsgn}*} -lemma hsgn: - "hsgn (Abs_star(starrel `` {%n. X n})) = - Abs_star(starrel `` {%n. sgn (X n)})" -apply (simp add: hsgn_def) -apply (rule_tac f = Abs_star in arg_cong) -apply (auto iff: starrel_iff, ultra) -done +lemma hsgn: "hsgn (star_n X) = star_n (%n. sgn (X n))" +by (simp add: hsgn_def starfun) lemma hsgn_zero [simp]: "hsgn 0 = 0" -by (simp add: hypreal_zero_def hsgn) +by (simp add: star_n_zero_num hsgn) lemma hsgn_one [simp]: "hsgn 1 = 1" -by (simp add: hypreal_one_def hsgn) +by (simp add: star_n_one_num hsgn) lemma hsgn_minus: "hsgn (-z) = - hsgn(z)" -apply (rule_tac z=z in eq_Abs_star) -apply (simp add: hsgn hcomplex_minus sgn_minus) +apply (cases z) +apply (simp add: hsgn star_n_minus sgn_minus) done lemma hsgn_eq: "hsgn z = z / hcomplex_of_hypreal (hcmod z)" -apply (rule_tac z=z in eq_Abs_star) -apply (simp add: hsgn hcomplex_divide hcomplex_of_hypreal hcmod sgn_eq) +apply (cases z) +apply (simp add: hsgn star_n_divide hcomplex_of_hypreal hcmod sgn_eq) done lemma hcmod_i: "hcmod (HComplex x y) = ( *f* sqrt) (x ^ 2 + y ^ 2)" -apply (rule_tac z=x in eq_Abs_star, rule_tac z=y in eq_Abs_star) +apply (cases x, cases y) apply (simp add: HComplex_eq_Abs_star_Complex starfun - hypreal_mult hypreal_add hcmod numeral_2_eq_2) + star_n_mult star_n_add hcmod numeral_2_eq_2) done lemma hcomplex_eq_cancel_iff1 [simp]: @@ -898,13 +570,13 @@ by (simp add: i_eq_HComplex_0_1) lemma hRe_hsgn [simp]: "hRe(hsgn z) = hRe(z)/hcmod z" -apply (rule_tac z=z in eq_Abs_star) -apply (simp add: hsgn hcmod hRe hypreal_divide) +apply (cases z) +apply (simp add: hsgn hcmod hRe star_n_divide) done lemma hIm_hsgn [simp]: "hIm(hsgn z) = hIm(z)/hcmod z" -apply (rule_tac z=z in eq_Abs_star) -apply (simp add: hsgn hcmod hIm hypreal_divide) +apply (cases z) +apply (simp add: hsgn hcmod hIm star_n_divide) done (*????move to RealDef????*) @@ -912,68 +584,46 @@ by (auto intro: real_sum_squares_cancel iff: real_add_eq_0_iff) lemma hcomplex_inverse_complex_split: - "inverse(hcomplex_of_hypreal x + iii * hcomplex_of_hypreal y) = + "!!x y. inverse(hcomplex_of_hypreal x + iii * hcomplex_of_hypreal y) = hcomplex_of_hypreal(x/(x ^ 2 + y ^ 2)) - iii * hcomplex_of_hypreal(y/(x ^ 2 + y ^ 2))" -apply (rule_tac z=x in eq_Abs_star, rule_tac z=y in eq_Abs_star) -apply (simp add: hcomplex_of_hypreal hcomplex_mult hcomplex_add iii_def - starfun hypreal_mult hypreal_add hcomplex_inverse hypreal_divide - hcomplex_diff numeral_2_eq_2 complex_of_real_def i_def) -apply (simp add: diff_minus) +apply (unfold hcomplex_of_hypreal_def iii_def) +apply (transfer, rule complex_inverse_complex_split) done lemma HComplex_inverse: - "inverse (HComplex x y) = + "!!x y. inverse (HComplex x y) = HComplex (x/(x ^ 2 + y ^ 2)) (-y/(x ^ 2 + y ^ 2))" -by (simp only: HComplex_def hcomplex_inverse_complex_split, simp) - - +by (unfold HComplex_def, transfer, rule complex_inverse) lemma hRe_mult_i_eq[simp]: - "hRe (iii * hcomplex_of_hypreal y) = 0" -apply (simp add: iii_def, rule_tac z=y in eq_Abs_star) -apply (simp add: hcomplex_of_hypreal hcomplex_mult hRe hypreal_zero_num) -done + "!!y. hRe (iii * hcomplex_of_hypreal y) = 0" +by (unfold hRe_def iii_def hcomplex_of_hypreal_def, transfer, simp) lemma hIm_mult_i_eq [simp]: - "hIm (iii * hcomplex_of_hypreal y) = y" -apply (simp add: iii_def, rule_tac z=y in eq_Abs_star) -apply (simp add: hcomplex_of_hypreal hcomplex_mult hIm hypreal_zero_num) -done + "!!y. hIm (iii * hcomplex_of_hypreal y) = y" +by (unfold hIm_def iii_def hcomplex_of_hypreal_def, transfer, simp) -lemma hcmod_mult_i [simp]: "hcmod (iii * hcomplex_of_hypreal y) = abs y" -apply (rule_tac z=y in eq_Abs_star) -apply (simp add: hcomplex_of_hypreal hcmod hypreal_hrabs iii_def hcomplex_mult) -done +lemma hcmod_mult_i [simp]: "!!y. hcmod (iii * hcomplex_of_hypreal y) = abs y" +by (unfold hcmod_def iii_def hcomplex_of_hypreal_def, transfer, simp) lemma hcmod_mult_i2 [simp]: "hcmod (hcomplex_of_hypreal y * iii) = abs y" -by (simp only: hcmod_mult_i hcomplex_mult_commute) +by (simp only: hcmod_mult_i mult_commute) (*---------------------------------------------------------------------------*) (* harg *) (*---------------------------------------------------------------------------*) -lemma harg: - "harg (Abs_star(starrel `` {%n. X n})) = - Abs_star(starrel `` {%n. arg (X n)})" -apply (simp add: harg_def) -apply (rule_tac f = Abs_star in arg_cong) -apply (auto iff: starrel_iff, ultra) -done +lemma harg: "harg (star_n X) = star_n (%n. arg (X n))" +by (simp add: harg_def starfun) lemma cos_harg_i_mult_zero_pos: - "0 < y ==> ( *f* cos) (harg(HComplex 0 y)) = 0" -apply (rule_tac z=y in eq_Abs_star) -apply (simp add: HComplex_def hcomplex_of_hypreal iii_def hcomplex_mult - hcomplex_add hypreal_zero_num hypreal_less starfun harg, ultra) -done + "!!y. 0 < y ==> ( *f* cos) (harg(HComplex 0 y)) = 0" +by (unfold harg_def HComplex_def, transfer, rule cos_arg_i_mult_zero_pos) lemma cos_harg_i_mult_zero_neg: - "y < 0 ==> ( *f* cos) (harg(HComplex 0 y)) = 0" -apply (rule_tac z=y in eq_Abs_star) -apply (simp add: HComplex_def hcomplex_of_hypreal iii_def hcomplex_mult - hcomplex_add hypreal_zero_num hypreal_less starfun harg, ultra) -done + "!!y. y < 0 ==> ( *f* cos) (harg(HComplex 0 y)) = 0" +by (unfold harg_def HComplex_def, transfer, rule cos_arg_i_mult_zero_neg) lemma cos_harg_i_mult_zero [simp]: "y \ 0 ==> ( *f* cos) (harg(HComplex 0 y)) = 0" @@ -981,10 +631,8 @@ cos_harg_i_mult_zero_pos cos_harg_i_mult_zero_neg) lemma hcomplex_of_hypreal_zero_iff [simp]: - "(hcomplex_of_hypreal y = 0) = (y = 0)" -apply (rule_tac z=y in eq_Abs_star) -apply (simp add: hcomplex_of_hypreal hypreal_zero_num hypreal_zero_def) -done + "!!y. (hcomplex_of_hypreal y = 0) = (y = 0)" +by (unfold hcomplex_of_hypreal_def, transfer, simp) subsection{*Polar Form for Nonstandard Complex Numbers*} @@ -995,41 +643,29 @@ lemma lemma_hypreal_P_EX2: "(\(x::hypreal) y. P x y) = - (\f g. P (Abs_star(starrel `` {f})) (Abs_star(starrel `` {g})))" + (\f g. P (star_n f) (star_n g))" apply auto -apply (rule_tac z = x in eq_Abs_star) -apply (rule_tac z = y in eq_Abs_star, auto) +apply (rule_tac x = x in star_cases) +apply (rule_tac x = y in star_cases, auto) done lemma hcomplex_split_polar: - "\r a. z = hcomplex_of_hypreal r * (HComplex(( *f* cos) a)(( *f* sin) a))" -apply (rule_tac z=z in eq_Abs_star) -apply (simp add: lemma_hypreal_P_EX2 hcomplex_of_hypreal iii_def starfun hcomplex_add hcomplex_mult HComplex_def) -apply (cut_tac z = x in complex_split_polar2) -apply (drule choice, safe)+ -apply (rule_tac x = f in exI) -apply (rule_tac x = fa in exI, auto) -done + "!!z. \r a. z = hcomplex_of_hypreal r * (HComplex(( *f* cos) a)(( *f* sin) a))" +by (unfold hcomplex_of_hypreal_def HComplex_def, transfer, rule complex_split_polar) -lemma hcis: - "hcis (Abs_star(starrel `` {%n. X n})) = - Abs_star(starrel `` {%n. cis (X n)})" -apply (simp add: hcis_def) -apply (rule_tac f = Abs_star in arg_cong, auto iff: starrel_iff, ultra) -done +lemma hcis: "hcis (star_n X) = star_n (%n. cis (X n))" +by (simp add: hcis_def starfun) lemma hcis_eq: "hcis a = (hcomplex_of_hypreal(( *f* cos) a) + iii * hcomplex_of_hypreal(( *f* sin) a))" -apply (rule_tac z=a in eq_Abs_star) -apply (simp add: starfun hcis hcomplex_of_hypreal iii_def hcomplex_mult hcomplex_add cis_def) +apply (cases a) +apply (simp add: starfun hcis hcomplex_of_hypreal iii_def star_of_def star_n_mult star_n_add cis_def star_n_eq_iff) done -lemma hrcis: - "hrcis (Abs_star(starrel `` {%n. X n})) (Abs_star(starrel `` {%n. Y n})) = - Abs_star(starrel `` {%n. rcis (X n) (Y n)})" -by (simp add: hrcis_def hcomplex_of_hypreal hcomplex_mult hcis rcis_def) +lemma hrcis: "hrcis (star_n X) (star_n Y) = star_n (%n. rcis (X n) (Y n))" +by (simp add: hrcis_def hcomplex_of_hypreal star_n_mult hcis rcis_def) lemma hrcis_Ex: "\r a. z = hrcis r a" apply (simp add: hrcis_def hcis_eq hcomplex_of_hypreal_mult_HComplex [symmetric]) @@ -1054,11 +690,8 @@ lemma hcmod_unit_one [simp]: - "hcmod (HComplex (( *f* cos) a) (( *f* sin) a)) = 1" -apply (rule_tac z=a in eq_Abs_star) -apply (simp add: HComplex_def iii_def starfun hcomplex_of_hypreal - hcomplex_mult hcmod hcomplex_add hypreal_one_def) -done + "!!a. hcmod (HComplex (( *f* cos) a) (( *f* sin) a)) = 1" +by (unfold hcmod_def HComplex_def, transfer, simp) lemma hcmod_complex_polar [simp]: "hcmod (hcomplex_of_hypreal r * HComplex (( *f* cos) a) (( *f* sin) a)) = @@ -1079,39 +712,39 @@ lemma hrcis_mult: "hrcis r1 a * hrcis r2 b = hrcis (r1*r2) (a + b)" -apply (simp add: hrcis_def, rule_tac z=r1 in eq_Abs_star, rule_tac z=r2 in eq_Abs_star, rule_tac z=a in eq_Abs_star, rule_tac z=b in eq_Abs_star) -apply (simp add: hrcis hcis hypreal_add hypreal_mult hcomplex_of_hypreal - hcomplex_mult cis_mult [symmetric]) +apply (simp add: hrcis_def, rule_tac z=r1 in eq_Abs_star, rule_tac z=r2 in eq_Abs_star, cases a, cases b) +apply (simp add: hrcis hcis star_n_add star_n_mult hcomplex_of_hypreal + star_n_mult cis_mult [symmetric]) done lemma hcis_mult: "hcis a * hcis b = hcis (a + b)" -apply (rule_tac z=a in eq_Abs_star, rule_tac z=b in eq_Abs_star) -apply (simp add: hcis hcomplex_mult hypreal_add cis_mult) +apply (cases a, cases b) +apply (simp add: hcis star_n_mult star_n_add cis_mult) done lemma hcis_zero [simp]: "hcis 0 = 1" -by (simp add: hypreal_one_def hcis hypreal_zero_num) +by (simp add: star_n_one_num hcis star_n_zero_num) lemma hrcis_zero_mod [simp]: "hrcis 0 a = 0" -apply (simp add: hypreal_zero_def, rule_tac z=a in eq_Abs_star) -apply (simp add: hrcis hypreal_zero_num) +apply (simp add: star_n_zero_num, cases a) +apply (simp add: hrcis star_n_zero_num) done lemma hrcis_zero_arg [simp]: "hrcis r 0 = hcomplex_of_hypreal r" -apply (rule_tac z=r in eq_Abs_star) -apply (simp add: hrcis hypreal_zero_num hcomplex_of_hypreal) +apply (cases r) +apply (simp add: hrcis star_n_zero_num hcomplex_of_hypreal) done lemma hcomplex_i_mult_minus [simp]: "iii * (iii * x) = - x" -by (simp add: hcomplex_mult_assoc [symmetric]) +by (simp add: mult_assoc [symmetric]) lemma hcomplex_i_mult_minus2 [simp]: "iii * iii * x = - x" by simp lemma hcis_hypreal_of_nat_Suc_mult: "hcis (hypreal_of_nat (Suc n) * a) = hcis a * hcis (hypreal_of_nat n * a)" -apply (rule_tac z=a in eq_Abs_star) -apply (simp add: hypreal_of_nat hcis hypreal_mult hcomplex_mult cis_real_of_nat_Suc_mult) +apply (cases a) +apply (simp add: hypreal_of_nat hcis star_n_mult star_n_mult cis_real_of_nat_Suc_mult) done lemma NSDeMoivre: "(hcis a) ^ n = hcis (hypreal_of_nat n * a)" @@ -1122,13 +755,13 @@ lemma hcis_hypreal_of_hypnat_Suc_mult: "hcis (hypreal_of_hypnat (n + 1) * a) = hcis a * hcis (hypreal_of_hypnat n * a)" -apply (rule_tac z=a in eq_Abs_star, rule_tac z=n in eq_Abs_star) -apply (simp add: hcis hypreal_of_hypnat hypnat_add hypnat_one_def hypreal_mult hcomplex_mult cis_real_of_nat_Suc_mult) +apply (cases a, cases n) +apply (simp add: hcis hypreal_of_hypnat star_n_add star_n_one_num star_n_mult star_n_mult cis_real_of_nat_Suc_mult) done lemma NSDeMoivre_ext: "(hcis a) hcpow n = hcis (hypreal_of_hypnat n * a)" -apply (rule_tac z=a in eq_Abs_star, rule_tac z=n in eq_Abs_star) -apply (simp add: hcis hypreal_of_hypnat hypreal_mult hcpow DeMoivre) +apply (cases a, cases n) +apply (simp add: hcis hypreal_of_hypnat star_n_mult hcpow DeMoivre) done lemma DeMoivre2: @@ -1142,23 +775,23 @@ done lemma hcis_inverse [simp]: "inverse(hcis a) = hcis (-a)" -apply (rule_tac z=a in eq_Abs_star) -apply (simp add: hcomplex_inverse hcis hypreal_minus) +apply (cases a) +apply (simp add: star_n_inverse2 hcis star_n_minus) done lemma hrcis_inverse: "inverse(hrcis r a) = hrcis (inverse r) (-a)" -apply (rule_tac z=a in eq_Abs_star, rule_tac z=r in eq_Abs_star) -apply (simp add: hcomplex_inverse hrcis hypreal_minus hypreal_inverse rcis_inverse, ultra) +apply (cases a, cases r) +apply (simp add: star_n_inverse2 hrcis star_n_minus rcis_inverse star_n_eq_iff, ultra) apply (simp add: real_divide_def) done lemma hRe_hcis [simp]: "hRe(hcis a) = ( *f* cos) a" -apply (rule_tac z=a in eq_Abs_star) +apply (cases a) apply (simp add: hcis starfun hRe) done lemma hIm_hcis [simp]: "hIm(hcis a) = ( *f* sin) a" -apply (rule_tac z=a in eq_Abs_star) +apply (cases a) apply (simp add: hcis starfun hIm) done @@ -1175,8 +808,8 @@ by (simp add: NSDeMoivre_ext) lemma hexpi_add: "hexpi(a + b) = hexpi(a) * hexpi(b)" -apply (simp add: hexpi_def, rule_tac z=a in eq_Abs_star, rule_tac z=b in eq_Abs_star) -apply (simp add: hcis hRe hIm hcomplex_add hcomplex_mult hypreal_mult starfun hcomplex_of_hypreal cis_mult [symmetric] complex_Im_add complex_Re_add exp_add complex_of_real_mult) +apply (simp add: hexpi_def, cases a, cases b) +apply (simp add: hcis hRe hIm star_n_add star_n_mult star_n_mult starfun hcomplex_of_hypreal cis_mult [symmetric] complex_Im_add complex_Re_add exp_add complex_of_real_mult star_n_eq_iff) done @@ -1184,93 +817,61 @@ type @{typ complex} to to @{typ hcomplex}*} lemma inj_hcomplex_of_complex: "inj(hcomplex_of_complex)" -apply (rule inj_onI, rule ccontr) -apply (simp add: hcomplex_of_complex_def) -done +by (rule inj_onI, simp) lemma hcomplex_of_complex_i: "iii = hcomplex_of_complex ii" -by (simp add: iii_def hcomplex_of_complex_def star_of_def star_n_def) +by (simp add: iii_def star_of_def star_n_def) -lemma hcomplex_of_complex_add [simp]: +lemma hcomplex_of_complex_add: "hcomplex_of_complex (z1 + z2) = hcomplex_of_complex z1 + hcomplex_of_complex z2" -by (simp add: hcomplex_of_complex_def hcomplex_add) +by simp -lemma hcomplex_of_complex_mult [simp]: +lemma hcomplex_of_complex_mult: "hcomplex_of_complex (z1 * z2) = hcomplex_of_complex z1 * hcomplex_of_complex z2" -by (simp add: hcomplex_of_complex_def hcomplex_mult) +by simp -lemma hcomplex_of_complex_eq_iff [simp]: +lemma hcomplex_of_complex_eq_iff: "(hcomplex_of_complex z1 = hcomplex_of_complex z2) = (z1 = z2)" -by (simp add: hcomplex_of_complex_def) - - -lemma hcomplex_of_complex_minus [simp]: - "hcomplex_of_complex (-r) = - hcomplex_of_complex r" -by (simp add: hcomplex_of_complex_def hcomplex_minus) - -lemma hcomplex_of_complex_one [simp]: "hcomplex_of_complex 1 = 1" -by (simp add: hcomplex_of_complex_def hypreal_one_def) - -lemma hcomplex_of_complex_zero [simp]: "hcomplex_of_complex 0 = 0" -by (simp add: hcomplex_of_complex_def hypreal_zero_def) +by simp -lemma hcomplex_of_complex_zero_iff [simp]: +lemma hcomplex_of_complex_minus: + "hcomplex_of_complex (-r) = - hcomplex_of_complex r" +by simp + +lemma hcomplex_of_complex_one: "hcomplex_of_complex 1 = 1" +by simp + +lemma hcomplex_of_complex_zero: "hcomplex_of_complex 0 = 0" +by simp + +lemma hcomplex_of_complex_zero_iff: "(hcomplex_of_complex r = 0) = (r = 0)" -by (auto intro: FreeUltrafilterNat_P - simp add: hcomplex_of_complex_def star_of_def star_n_def hypreal_zero_def) +by simp -lemma hcomplex_of_complex_inverse [simp]: +lemma hcomplex_of_complex_inverse: "hcomplex_of_complex (inverse r) = inverse (hcomplex_of_complex r)" -proof cases - assume "r=0" thus ?thesis by simp -next - assume nz: "r\0" - show ?thesis - proof (rule hcomplex_mult_left_cancel [THEN iffD1]) - show "hcomplex_of_complex r \ 0" - by (simp add: nz) - next - have "hcomplex_of_complex r * hcomplex_of_complex (inverse r) = - hcomplex_of_complex (r * inverse r)" - by simp - also have "... = hcomplex_of_complex r * inverse (hcomplex_of_complex r)" - by (simp add: nz) - finally show "hcomplex_of_complex r * hcomplex_of_complex (inverse r) = - hcomplex_of_complex r * inverse (hcomplex_of_complex r)" . - qed -qed +by simp -lemma hcomplex_of_complex_divide [simp]: +lemma hcomplex_of_complex_divide: "hcomplex_of_complex (z1 / z2) = hcomplex_of_complex z1 / hcomplex_of_complex z2" -by (simp add: divide_inverse) +by simp lemma hRe_hcomplex_of_complex: "hRe (hcomplex_of_complex z) = hypreal_of_real (Re z)" -by (simp add: hcomplex_of_complex_def hypreal_of_real_def star_of_def star_n_def hRe) +by (simp add: star_of_def hRe) lemma hIm_hcomplex_of_complex: "hIm (hcomplex_of_complex z) = hypreal_of_real (Im z)" -by (simp add: hcomplex_of_complex_def hypreal_of_real_def star_of_def star_n_def hIm) +by (simp add: star_of_def hIm) lemma hcmod_hcomplex_of_complex: "hcmod (hcomplex_of_complex x) = hypreal_of_real (cmod x)" -by (simp add: hypreal_of_real_def star_of_def star_n_def hcomplex_of_complex_def hcmod) +by (simp add: star_of_def hcmod) subsection{*Numerals and Arithmetic*} -(* -instance hcomplex :: number .. - -defs (overloaded) - hcomplex_number_of_def: "(number_of w :: hcomplex) == of_int (Rep_Bin w)" - --{*the type constraint is essential!*} - -instance hcomplex :: number_ring -by (intro_classes, simp add: hcomplex_number_of_def) -*) - lemma hcomplex_number_of_def: "(number_of w :: hcomplex) == of_int (Rep_Bin w)" apply (rule eq_reflection) apply (unfold star_number_def star_of_int_def) @@ -1278,37 +879,27 @@ apply (rule number_of_eq) done -lemma hcomplex_of_complex_of_nat [simp]: +lemma hcomplex_of_complex_of_nat: "hcomplex_of_complex (of_nat n) = of_nat n" -by (simp add: hcomplex_of_complex_def) +by (rule star_of_of_nat) -lemma hcomplex_of_complex_of_int [simp]: +lemma hcomplex_of_complex_of_int: "hcomplex_of_complex (of_int z) = of_int z" -proof (cases z) - case (1 n) - thus ?thesis by simp -next - case (2 n) - thus ?thesis - by (simp only: of_int_minus hcomplex_of_complex_minus, simp) -qed +by (rule star_of_of_int) - -text{*Collapse applications of @{term hcomplex_of_complex} to @{term number_of}*} -lemma hcomplex_number_of [simp]: +lemma hcomplex_number_of: "hcomplex_of_complex (number_of w) = number_of w" -by (simp add: hcomplex_number_of_def complex_number_of_def) +by (rule star_of_number_of) lemma hcomplex_of_hypreal_eq_hcomplex_of_complex: "hcomplex_of_hypreal (hypreal_of_real x) = hcomplex_of_complex (complex_of_real x)" -by (simp add: hypreal_of_real_def hcomplex_of_hypreal hcomplex_of_complex_def - star_of_def star_n_def +by (simp add: hcomplex_of_hypreal star_of_def complex_of_real_def) lemma hcomplex_hypreal_number_of: "hcomplex_of_complex (number_of w) = hcomplex_of_hypreal(number_of w)" -by (simp only: complex_number_of [symmetric] hypreal_number_of [symmetric] +by (simp only: complex_number_of [symmetric] star_of_number_of [symmetric] hcomplex_of_hypreal_eq_hcomplex_of_complex) text{*This theorem is necessary because theorems such as @@ -1327,32 +918,24 @@ Goal "z + hcnj z = hcomplex_of_hypreal (2 * hRe(z))" by (res_inst_tac [("z","z")] eq_Abs_star 1); -by (auto_tac (claset(),HOL_ss addsimps [hRe,hcnj,hcomplex_add, +by (auto_tac (claset(),HOL_ss addsimps [hRe,hcnj,star_n_add, hypreal_mult,hcomplex_of_hypreal,complex_add_cnj])); -qed "hcomplex_add_hcnj"; +qed "star_n_add_hcnj"; Goal "z - hcnj z = \ \ hcomplex_of_hypreal (hypreal_of_real #2 * hIm(z)) * iii"; by (res_inst_tac [("z","z")] eq_Abs_star 1); by (auto_tac (claset(),simpset() addsimps [hIm,hcnj,hcomplex_diff, hypreal_of_real_def,hypreal_mult,hcomplex_of_hypreal, - complex_diff_cnj,iii_def,hcomplex_mult])); + complex_diff_cnj,iii_def,star_n_mult])); qed "hcomplex_diff_hcnj"; *) -lemma hcomplex_hcnj_num_zero_iff: "(hcnj z = 0) = (z = 0)" +lemma hcomplex_hcnj_num_zero_iff [simp]: "(hcnj z = 0) = (z = 0)" apply (auto simp add: hcomplex_hcnj_zero_iff) done -declare hcomplex_hcnj_num_zero_iff [simp] -lemma hcomplex_zero_num: "0 = Abs_star (starrel `` {%n. 0})" -apply (simp add: hypreal_zero_def) -done - -lemma hcomplex_one_num: "1 = Abs_star (starrel `` {%n. 1})" -apply (simp add: hypreal_one_def) -done (*** Real and imaginary stuff ***) @@ -1461,14 +1044,6 @@ ML {* -(* val hcomplex_zero_def = thm"hcomplex_zero_def"; *) -(* val hcomplex_one_def = thm"hcomplex_one_def"; *) -(* val hcomplex_minus_def = thm"hcomplex_minus_def"; *) -(* val hcomplex_diff_def = thm"hcomplex_diff_def"; *) -(* val hcomplex_divide_def = thm"hcomplex_divide_def"; *) -(* val hcomplex_mult_def = thm"hcomplex_mult_def"; *) -(* val hcomplex_add_def = thm"hcomplex_add_def"; *) -val hcomplex_of_complex_def = thm"hcomplex_of_complex_def"; val iii_def = thm"iii_def"; val hRe = thm"hRe"; @@ -1480,33 +1055,15 @@ val hcomplex_hIm_one = thm"hcomplex_hIm_one"; val inj_hcomplex_of_complex = thm"inj_hcomplex_of_complex"; val hcomplex_of_complex_i = thm"hcomplex_of_complex_i"; -val hcomplex_add = thm"hcomplex_add"; -val hcomplex_add_commute = thm"hcomplex_add_commute"; -val hcomplex_add_assoc = thm"hcomplex_add_assoc"; -val hcomplex_add_zero_left = thm"hcomplex_add_zero_left"; -val hcomplex_add_zero_right = thm"hcomplex_add_zero_right"; +val star_n_add = thm"star_n_add"; val hRe_add = thm"hRe_add"; val hIm_add = thm"hIm_add"; -(* val hcomplex_minus_congruent = thm"hcomplex_minus_congruent"; *) -val hcomplex_minus = thm"hcomplex_minus"; -val hcomplex_add_minus_left = thm"hcomplex_add_minus_left"; val hRe_minus = thm"hRe_minus"; val hIm_minus = thm"hIm_minus"; val hcomplex_add_minus_eq_minus = thm"hcomplex_add_minus_eq_minus"; -val hcomplex_diff = thm"hcomplex_diff"; val hcomplex_diff_eq_eq = thm"hcomplex_diff_eq_eq"; -val hcomplex_mult = thm"hcomplex_mult"; -val hcomplex_mult_commute = thm"hcomplex_mult_commute"; -val hcomplex_mult_assoc = thm"hcomplex_mult_assoc"; -val hcomplex_mult_one_left = thm"hcomplex_mult_one_left"; -val hcomplex_mult_one_right = thm"hcomplex_mult_one_right"; -val hcomplex_mult_zero_left = thm"hcomplex_mult_zero_left"; val hcomplex_mult_minus_one = thm"hcomplex_mult_minus_one"; val hcomplex_mult_minus_one_right = thm"hcomplex_mult_minus_one_right"; -val hcomplex_add_mult_distrib = thm"hcomplex_add_mult_distrib"; -val hcomplex_zero_not_eq_one = thm"hcomplex_zero_not_eq_one"; -val hcomplex_inverse = thm"hcomplex_inverse"; -val hcomplex_mult_inv_left = thm"hcomplex_mult_inv_left"; val hcomplex_mult_left_cancel = thm"hcomplex_mult_left_cancel"; val hcomplex_mult_right_cancel = thm"hcomplex_mult_right_cancel"; val hcomplex_add_divide_distrib = thm"hcomplex_add_divide_distrib"; @@ -1579,7 +1136,7 @@ val hcomplex_i_mult_eq = thm"hcomplex_i_mult_eq"; val hcomplexpow_i_squared = thm"hcomplexpow_i_squared"; val hcomplex_i_not_zero = thm"hcomplex_i_not_zero"; -val hcomplex_divide = thm"hcomplex_divide"; +val star_n_divide = thm"star_n_divide"; val hsgn = thm"hsgn"; val hsgn_zero = thm"hsgn_zero"; val hsgn_one = thm"hsgn_one";