diff -r 39be26d1bc28 -r bc7982c54e37 src/HOL/Number_Theory/Binomial.thy --- a/src/HOL/Number_Theory/Binomial.thy Mon Apr 26 11:34:17 2010 +0200 +++ b/src/HOL/Number_Theory/Binomial.thy Mon Apr 26 11:34:19 2010 +0200 @@ -208,7 +208,7 @@ have "fact (k + 1) * fact (n - k) * (n + 1 choose (k + 1)) = fact (k + 1) * fact (n - k) * (n choose (k + 1)) + fact (k + 1) * fact (n - k) * (n choose k)" - by (subst choose_reduce_nat, auto simp add: ring_simps) + by (subst choose_reduce_nat, auto simp add: field_simps) also note one also note two also with less have "(n - k) * fact n + (k + 1) * fact n= fact (n + 1)" @@ -279,7 +279,7 @@ also have "... = (SUM k=0..n. of_nat (n choose k) * a^k * b^(n+1-k)) + (SUM k=1..n+1. of_nat (n choose (k - 1)) * a^k * b^(n+1-k))" by (simp add:setsum_shift_bounds_cl_Suc_ivl Suc_diff_le - power_Suc ring_simps One_nat_def del:setsum_cl_ivl_Suc) + power_Suc field_simps One_nat_def del:setsum_cl_ivl_Suc) also have "... = a^(n+1) + b^(n+1) + (SUM k=1..n. of_nat (n choose (k - 1)) * a^k * b^(n+1-k)) + (SUM k=1..n. of_nat (n choose k) * a^k * b^(n+1-k))" @@ -287,10 +287,10 @@ also have "... = a^(n+1) + b^(n+1) + (SUM k=1..n. of_nat(n+1 choose k) * a^k * b^(n+1-k))" - by (auto simp add: ring_simps setsum_addf [symmetric] + by (auto simp add: field_simps setsum_addf [symmetric] choose_reduce_nat) also have "... = (SUM k=0..n+1. of_nat (n+1 choose k) * a^k * b^(n+1-k))" - using decomp by (simp add: ring_simps) + using decomp by (simp add: field_simps) finally show "?P (n + 1)" by simp qed