diff -r 6fae74ee591a -r bc874d2ee55a doc-src/IsarImplementation/Thy/document/Logic.tex --- a/doc-src/IsarImplementation/Thy/document/Logic.tex Wed Jan 25 14:13:59 2012 +0100 +++ b/doc-src/IsarImplementation/Thy/document/Logic.tex Wed Jan 25 15:39:08 2012 +0100 @@ -1226,21 +1226,46 @@ % \begin{isamarkuptext}% \begin{mldecls} + \indexdef{}{ML}{RSN}\verb|op RSN: thm * (int * thm) -> thm| \\ \indexdef{}{ML}{RS}\verb|op RS: thm * thm -> thm| \\ + + \indexdef{}{ML}{RLN}\verb|op RLN: thm list * (int * thm list) -> thm list| \\ + \indexdef{}{ML}{RL}\verb|op RL: thm list * thm list -> thm list| \\ + + \indexdef{}{ML}{MRS}\verb|op MRS: thm list * thm -> thm| \\ \indexdef{}{ML}{OF}\verb|op OF: thm * thm list -> thm| \\ \end{mldecls} \begin{description} - \item \isa{rule\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{1}}\ RS\ rule\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{2}}} resolves \isa{rule\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{1}}} with \isa{rule\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{2}}} according to the \hyperlink{inference.resolution}{\mbox{\isa{resolution}}} principle - explained above. Note that the corresponding rule attribute in the - Isar language is called \hyperlink{attribute.THEN}{\mbox{\isa{THEN}}}. + \item \isa{rule\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{1}}\ RSN\ {\isaliteral{28}{\isacharparenleft}}i{\isaliteral{2C}{\isacharcomma}}\ rule\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{2}}{\isaliteral{29}{\isacharparenright}}} resolves the conclusion of + \isa{rule\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{1}}} with the \isa{i}-th premise of \isa{rule\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{2}}}, + according to the \hyperlink{inference.resolution}{\mbox{\isa{resolution}}} principle explained above. + Unless there is precisely one resolvent it raises exception \verb|THM|. + + This corresponds to the rule attribute \hyperlink{attribute.THEN}{\mbox{\isa{THEN}}} in Isar + source language. + + \item \isa{rule\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{1}}\ RS\ rule\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{2}}} abbreviates \isa{rule\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{1}}\ RS\ {\isaliteral{28}{\isacharparenleft}}{\isadigit{1}}{\isaliteral{2C}{\isacharcomma}}\ rule\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{2}}{\isaliteral{29}{\isacharparenright}}}. - \item \isa{rule\ OF\ rules} resolves a list of rules with the - first rule, addressing its premises \isa{{\isadigit{1}}{\isaliteral{2C}{\isacharcomma}}\ {\isaliteral{5C3C646F74733E}{\isasymdots}}{\isaliteral{2C}{\isacharcomma}}\ length\ rules} - (operating from last to first). This means the newly emerging - premises are all concatenated, without interfering. Also note that - compared to \isa{RS}, the rule argument order is swapped: \isa{rule\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{1}}\ RS\ rule\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{2}}\ {\isaliteral{3D}{\isacharequal}}\ rule\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{2}}\ OF\ {\isaliteral{5B}{\isacharbrackleft}}rule\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{1}}{\isaliteral{5D}{\isacharbrackright}}}. + \item \isa{rules\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{1}}\ RLN\ {\isaliteral{28}{\isacharparenleft}}i{\isaliteral{2C}{\isacharcomma}}\ rules\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{2}}{\isaliteral{29}{\isacharparenright}}} joins lists of rules. For + every \isa{rule\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{1}}} in \isa{rules\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{1}}} and \isa{rule\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{2}}} in + \isa{rules\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{2}}}, it resolves the conclusion of \isa{rule\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{1}}} with + the \isa{i}-th premise of \isa{rule\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{2}}}, accumulating multiple + results in one big list. Note that such strict enumerations of + higher-order unifications can be inefficient compared to the lazy + variant seen in elementary tactics like \verb|resolve_tac|. + + \item \isa{rules\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{1}}\ RL\ rules\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{2}}} abbreviates \isa{rules\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{1}}\ RLN\ {\isaliteral{28}{\isacharparenleft}}{\isadigit{1}}{\isaliteral{2C}{\isacharcomma}}\ rules\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{2}}{\isaliteral{29}{\isacharparenright}}}. + + \item \isa{{\isaliteral{5B}{\isacharbrackleft}}rule\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{1}}{\isaliteral{2C}{\isacharcomma}}\ {\isaliteral{5C3C646F74733E}{\isasymdots}}{\isaliteral{2C}{\isacharcomma}}\ rule\isaliteral{5C3C5E7375623E}{}\isactrlsub n{\isaliteral{5D}{\isacharbrackright}}\ MRS\ rule} resolves \isa{rule\isaliteral{5C3C5E697375623E}{}\isactrlisub i} + against premise \isa{i} of \isa{rule}, for \isa{i\ {\isaliteral{3D}{\isacharequal}}\ n{\isaliteral{2C}{\isacharcomma}}\ {\isaliteral{5C3C646F74733E}{\isasymdots}}{\isaliteral{2C}{\isacharcomma}}\ {\isadigit{1}}}. By working from right to left, newly emerging premises are + concatenated in the result, without interfering. + + \item \isa{rule\ OF\ rules} abbreviates \isa{rules\ MRS\ rule}. + + This corresponds to the rule attribute \hyperlink{attribute.OF}{\mbox{\isa{OF}}} in Isar + source language. \end{description}% \end{isamarkuptext}%