diff -r 673d7bc6b9db -r bca734def300 src/HOL/Library/While_Combinator.thy --- a/src/HOL/Library/While_Combinator.thy Tue Oct 23 22:57:52 2001 +0200 +++ b/src/HOL/Library/While_Combinator.thy Tue Oct 23 22:58:15 2001 +0200 @@ -135,14 +135,13 @@ theory.} *} -theorem "P (lfp (\N::int set. {Numeral0} \ {(n + 2) mod 6 | n. n \ N})) = - P {Numeral0, 4, 2}" +theorem "P (lfp (\N::int set. {0} \ {(n + 2) mod 6 | n. n \ N})) = P {0, 4, 2}" proof - have aux: "!!f A B. {f n | n. A n \ B n} = {f n | n. A n} \ {f n | n. B n}" apply blast done show ?thesis - apply (subst lfp_conv_while [where ?U = "{Numeral0, Numeral1, 2, 3, 4, 5}"]) + apply (subst lfp_conv_while [where ?U = "{0, 1, 2, 3, 4, 5}"]) apply (rule monoI) apply blast apply simp