diff -r 8e55aa1306c5 -r bcd6fce5bf06 src/HOL/Tools/SMT/z3_proof_parser.ML --- a/src/HOL/Tools/SMT/z3_proof_parser.ML Wed May 12 23:54:02 2010 +0200 +++ b/src/HOL/Tools/SMT/z3_proof_parser.ML Wed May 12 23:54:04 2010 +0200 @@ -29,6 +29,10 @@ structure Z3_Proof_Parser: Z3_PROOF_PARSER = struct +structure I = Z3_Interface + + + (** proof rules **) datatype rule = TrueAxiom | Asserted | Goal | ModusPonens | Reflexivity | @@ -87,16 +91,15 @@ (** certified terms and variables **) -val (var_prefix, decl_prefix) = ("v", "sk") (* must be distinct *) +val (var_prefix, decl_prefix) = ("v", "sk") +(* "decl_prefix" is for skolem constants (represented by free variables) + "var_prefix" is for pseudo-schematic variables (schematic with respect + to the Z3 proof, but represented by free variables) -fun instTs cUs (cTs, ct) = Thm.instantiate_cterm (cTs ~~ cUs, []) ct -fun instT cU (cT, ct) = instTs [cU] ([cT], ct) -fun mk_inst_pair destT cpat = (destT (Thm.ctyp_of_term cpat), cpat) -val destT1 = hd o Thm.dest_ctyp -val destT2 = hd o tl o Thm.dest_ctyp - -fun ctyp_of (ct, _) = Thm.ctyp_of_term ct -fun instT' t = instT (ctyp_of t) + Both prefixes must be distinct to avoid name interferences. + More precisely, the naming of pseudo-schematic variables must be + context-independent modulo the current proof context to be able to + use fast inference kernel rules during proof reconstruction. *) fun certify ctxt = Thm.cterm_of (ProofContext.theory_of ctxt) @@ -128,12 +131,11 @@ (case AList.lookup (op =) vars 0 of SOME cv => cv | _ => Thm.cterm_of thy (Var ((Name.uu, maxidx_of ct + 1), T))) - val cq = instT (Thm.ctyp_of_term cv) q fun dec (i, v) = if i = 0 then NONE else SOME (i-1, v) - in (Thm.capply cq (Thm.cabs cv ct), map_filter dec vars) end + in (Thm.capply (I.instT' cv q) (Thm.cabs cv ct), map_filter dec vars) end - val forall = mk_inst_pair (destT1 o destT1) @{cpat All} - val exists = mk_inst_pair (destT1 o destT1) @{cpat Ex} + val forall = I.mk_inst_pair (I.destT1 o I.destT1) @{cpat All} + val exists = I.mk_inst_pair (I.destT1 o I.destT1) @{cpat Ex} in fun mk_forall thy = fold_rev (mk_quant thy forall) fun mk_exists thy = fold_rev (mk_quant thy exists) @@ -143,118 +145,29 @@ local fun equal_var cv (_, cu) = (cv aconvc cu) - fun apply (ct2, vars2) (ct1, vars1) = + fun prep (ct, vars) (maxidx, all_vars) = let - val incr = Thm.incr_indexes_cterm (maxidx_of ct1 + maxidx_of ct2 + 2) + val maxidx' = maxidx_of ct + maxidx + 1 fun part (v as (i, cv)) = - (case AList.lookup (op =) vars1 i of + (case AList.lookup (op =) all_vars i of SOME cu => apfst (if cu aconvc cv then I else cons (cv, cu)) | NONE => - if not (exists (equal_var cv) vars1) then apsnd (cons v) + if not (exists (equal_var cv) all_vars) then apsnd (cons v) else - let val cv' = incr cv + let val cv' = Thm.incr_indexes_cterm maxidx' cv in apfst (cons (cv, cv')) #> apsnd (cons (i, cv')) end) - val (ct2', vars2') = - if null vars1 then (ct2, vars2) - else fold part vars2 ([], []) - |>> (fn inst => Thm.instantiate_cterm ([], inst) ct2) - - in (Thm.capply ct1 ct2', vars1 @ vars2') end -in -fun mk_fun ct ts = fold apply ts (ct, []) -fun mk_binop f t u = mk_fun f [t, u] -fun mk_nary _ e [] = e - | mk_nary ct _ es = uncurry (fold_rev (mk_binop ct)) (split_last es) -end - - -val mk_true = mk_fun @{cterm "~False"} [] -val mk_false = mk_fun @{cterm "False"} [] -fun mk_not t = mk_fun @{cterm Not} [t] -val mk_imp = mk_binop @{cterm "op -->"} -val mk_iff = mk_binop @{cterm "op = :: bool => _"} - -val eq = mk_inst_pair destT1 @{cpat "op ="} -fun mk_eq t u = mk_binop (instT' t eq) t u - -val if_term = mk_inst_pair (destT1 o destT2) @{cpat If} -fun mk_if c t u = mk_fun (instT' t if_term) [c, t, u] - -val nil_term = mk_inst_pair destT1 @{cpat Nil} -val cons_term = mk_inst_pair destT1 @{cpat Cons} -fun mk_list cT es = - fold_rev (mk_binop (instT cT cons_term)) es (mk_fun (instT cT nil_term) []) - -val distinct = mk_inst_pair (destT1 o destT1) @{cpat distinct} -fun mk_distinct [] = mk_true - | mk_distinct (es as (e :: _)) = - mk_fun (instT' e distinct) [mk_list (ctyp_of e) es] - - -(* arithmetic *) - -fun mk_int_num i = mk_fun (Numeral.mk_cnumber @{ctyp int} i) [] -fun mk_real_num i = mk_fun (Numeral.mk_cnumber @{ctyp real} i) [] -fun mk_real_frac_num (e, NONE) = mk_real_num e - | mk_real_frac_num (e, SOME d) = - mk_binop @{cterm "op / :: real => _"} (mk_real_num e) (mk_real_num d) - -fun has_int_type e = (Thm.typ_of (ctyp_of e) = @{typ int}) -fun choose e i r = if has_int_type e then i else r + val (inst, vars') = + if null vars then ([], vars) + else fold part vars ([], []) -val uminus_i = @{cterm "uminus :: int => _"} -val uminus_r = @{cterm "uminus :: real => _"} -fun mk_uminus e = mk_fun (choose e uminus_i uminus_r) [e] - -fun arith_op int_op real_op t u = mk_binop (choose t int_op real_op) t u - -val mk_add = arith_op @{cterm "op + :: int => _"} @{cterm "op + :: real => _"} -val mk_sub = arith_op @{cterm "op - :: int => _"} @{cterm "op - :: real => _"} -val mk_mul = arith_op @{cterm "op * :: int => _"} @{cterm "op * :: real => _"} -val mk_int_div = mk_binop @{cterm "op div :: int => _"} -val mk_real_div = mk_binop @{cterm "op / :: real => _"} -val mk_mod = mk_binop @{cterm "op mod :: int => _"} -val mk_lt = arith_op @{cterm "op < :: int => _"} @{cterm "op < :: real => _"} -val mk_le = arith_op @{cterm "op <= :: int => _"} @{cterm "op <= :: real => _"} - - -(* arrays *) - -val access = mk_inst_pair (Thm.dest_ctyp o destT1) @{cpat apply} -fun mk_access array index = - let val cTs = Thm.dest_ctyp (ctyp_of array) - in mk_fun (instTs cTs access) [array, index] end - -val update = mk_inst_pair (Thm.dest_ctyp o destT1) @{cpat fun_upd} -fun mk_update array index value = - let val cTs = Thm.dest_ctyp (ctyp_of array) - in mk_fun (instTs cTs update) [array, index, value] end - - -(* bitvectors *) - -fun mk_binT size = - let - fun bitT i T = - if i = 0 - then Type (@{type_name "Numeral_Type.bit0"}, [T]) - else Type (@{type_name "Numeral_Type.bit1"}, [T]) - - fun binT i = - if i = 0 then @{typ "Numeral_Type.num0"} - else if i = 1 then @{typ "Numeral_Type.num1"} - else let val (q, r) = Integer.div_mod i 2 in bitT r (binT q) end - in - if size >= 0 then binT size - else raise TYPE ("mk_binT: " ^ string_of_int size, [], []) - end - -fun mk_wordT size = Type (@{type_name "word"}, [mk_binT size]) - -fun mk_bv_num thy (num, size) = - mk_fun (Numeral.mk_cnumber (Thm.ctyp_of thy (mk_wordT size)) num) [] + in (Thm.instantiate_cterm ([], inst) ct, (maxidx', vars' @ all_vars)) end +in +fun mk_fun f ts = + let val (cts, (_, vars)) = fold_map prep ts (~1, []) + in f cts |> Option.map (rpair vars) end +end @@ -277,6 +190,7 @@ fun cert @{term True} = @{cterm "~False"} | cert t = certify ctxt' t + in (typs, Symtab.map cert terms, Inttab.empty, Inttab.empty, [], ctxt') end fun fresh_name n (typs, terms, exprs, steps, vars, ctxt) = @@ -285,14 +199,6 @@ fun theory_of (_, _, _, _, _, ctxt) = ProofContext.theory_of ctxt -fun typ_of_sort n (cx as (typs, _, _, _, _, _)) = - (case Symtab.lookup typs n of - SOME T => (T, cx) - | NONE => cx - |> fresh_name ("'" ^ n) |>> TFree o rpair @{sort type} - |> (fn (T, (typs, terms, exprs, steps, vars, ctxt)) => - (T, (Symtab.update (n, T) typs, terms, exprs, steps, vars, ctxt)))) - fun add_decl (n, T) (cx as (_, terms, _, _, _, _)) = (case Symtab.lookup terms n of SOME _ => cx @@ -301,36 +207,20 @@ let val upd = Symtab.update (n, certify ctxt (Free (m, T))) in (typs, upd terms, exprs, steps, vars, ctxt) end)) -datatype sym = Sym of string * sym list +fun mk_typ (typs, _, _, _, _, ctxt) (s as I.Sym (n, _)) = + (case I.mk_builtin_typ ctxt s of + SOME T => SOME T + | NONE => Symtab.lookup typs n) -fun mk_app _ (Sym ("true", _), _) = SOME mk_true - | mk_app _ (Sym ("false", _), _) = SOME mk_false - | mk_app _ (Sym ("=", _), [t, u]) = SOME (mk_eq t u) - | mk_app _ (Sym ("distinct", _), ts) = SOME (mk_distinct ts) - | mk_app _ (Sym ("ite", _), [s, t, u]) = SOME (mk_if s t u) - | mk_app _ (Sym ("and", _), ts) = SOME (mk_nary @{cterm "op &"} mk_true ts) - | mk_app _ (Sym ("or", _), ts) = SOME (mk_nary @{cterm "op |"} mk_false ts) - | mk_app _ (Sym ("iff", _), [t, u]) = SOME (mk_iff t u) - | mk_app _ (Sym ("xor", _), [t, u]) = SOME (mk_not (mk_iff t u)) - | mk_app _ (Sym ("not", _), [t]) = SOME (mk_not t) - | mk_app _ (Sym ("implies", _), [t, u]) = SOME (mk_imp t u) - | mk_app _ (Sym ("~", _), [t, u]) = SOME (mk_iff t u) - | mk_app _ (Sym ("<", _), [t, u]) = SOME (mk_lt t u) - | mk_app _ (Sym ("<=", _), [t, u]) = SOME (mk_le t u) - | mk_app _ (Sym (">", _), [t, u]) = SOME (mk_lt u t) - | mk_app _ (Sym (">=", _), [t, u]) = SOME (mk_le u t) - | mk_app _ (Sym ("+", _), [t, u]) = SOME (mk_add t u) - | mk_app _ (Sym ("-", _), [t, u]) = SOME (mk_sub t u) - | mk_app _ (Sym ("-", _), [t]) = SOME (mk_uminus t) - | mk_app _ (Sym ("*", _), [t, u]) = SOME (mk_mul t u) - | mk_app _ (Sym ("/", _), [t, u]) = SOME (mk_real_div t u) - | mk_app _ (Sym ("div", _), [t, u]) = SOME (mk_int_div t u) - | mk_app _ (Sym ("mod", _), [t, u]) = SOME (mk_mod t u) - | mk_app _ (Sym ("select", _), [m, k]) = SOME (mk_access m k) - | mk_app _ (Sym ("store", _), [m, k, v]) = SOME (mk_update m k v) - | mk_app _ (Sym ("pattern", _), _) = SOME mk_true - | mk_app (_, terms, _, _, _, _) (Sym (n, _), ts) = - Symtab.lookup terms n |> Option.map (fn ct => mk_fun ct ts) +fun mk_num (_, _, _, _, _, ctxt) (i, T) = + mk_fun (K (I.mk_builtin_num ctxt i T)) [] + +fun mk_app (_, terms, _, _, _, ctxt) (s as I.Sym (n, _), es) = + mk_fun (fn cts => + (case I.mk_builtin_fun ctxt s cts of + SOME ct => SOME ct + | NONE => + Symtab.lookup terms n |> Option.map (Drule.list_comb o rpair cts))) es fun add_expr k t (typs, terms, exprs, steps, vars, ctxt) = (typs, terms, Inttab.update (k, t) exprs, steps, vars, ctxt) @@ -395,8 +285,9 @@ "4" => SOME 4 | "5" => SOME 5 | "6" => SOME 6 | "7" => SOME 7 | "8" => SOME 8 | "9" => SOME 9 | _ => NONE) -fun mk_num ds = fold (fn d => fn i => i * 10 + d) ds 0 -val nat_num = Scan.lift (Scan.repeat1 (Scan.some digit)) >> mk_num +val digits = Scan.lift (Scan.many1 Symbol.is_ascii_digit) >> implode +val nat_num = Scan.lift (Scan.repeat1 (Scan.some digit)) >> (fn ds => + fold (fn d => fn i => i * 10 + d) ds 0) val int_num = Scan.optional ($$ "-" >> K (fn i => ~i)) I :|-- (fn sign => nat_num >> sign) @@ -404,7 +295,8 @@ member (op =) (explode "_+*-/%~=<>$&|?!.@^#") val name = Scan.lift (Scan.many1 is_char) >> implode -fun sym st = (name -- Scan.optional (bra (seps_by ($$ ":") sym)) [] >> Sym) st +fun sym st = + (name -- Scan.optional (bra (seps_by ($$ ":") sym)) [] >> I.Sym) st fun id st = ($$ "#" |-- nat_num) st @@ -412,29 +304,40 @@ (* parsers for various parts of Z3 proofs *) fun sort st = Scan.first [ - this "bool" >> K @{typ bool}, - this "int" >> K @{typ int}, - this "real" >> K @{typ real}, - this "bv" |-- bra nat_num >> mk_wordT, this "array" |-- bra (sort --| $$ ":" -- sort) >> (op -->), par (this "->" |-- seps1 sort) >> ((op --->) o split_last), - name :|-- with_context typ_of_sort] st + sym :|-- (fn s as I.Sym (n, _) => lookup_context mk_typ s :|-- (fn + SOME T => Scan.succeed T + | NONE => scan_exn ("unknown sort: " ^ quote n)))] st fun bound st = (par (this ":var" |-- sep nat_num -- sep sort) :|-- lookup_context (mk_bound o theory_of)) st -fun number st = st |> ( - int_num -- Scan.option ($$ "/" |-- int_num) --| this "::" :|-- - (fn num as (n, _) => - this "int" >> K (mk_int_num n) || - this "real" >> K (mk_real_frac_num num))) +fun numb (n as (i, _)) = lookup_context mk_num n :|-- (fn + SOME n' => Scan.succeed n' + | NONE => scan_exn ("unknown number: " ^ quote (string_of_int i))) + +fun appl (app as (I.Sym (n, _), _)) = lookup_context mk_app app :|-- (fn + SOME app' => Scan.succeed app' + | NONE => scan_exn ("unknown function symbol: " ^ quote n)) + +fun bv_size st = (digits >> (fn sz => I.Sym ("bv", [I.Sym (sz, [])]))) st -fun bv_number st = (this "bv" |-- bra (nat_num --| $$ ":" -- nat_num) :|-- - lookup_context (mk_bv_num o theory_of)) st +fun bv_number_sort st = (bv_size :|-- lookup_context mk_typ :|-- (fn + SOME cT => Scan.succeed cT + | NONE => scan_exn ("unknown sort: " ^ quote "bv"))) st + +fun bv_number st = + (this "bv" |-- bra (nat_num --| $$ ":" -- bv_number_sort) :|-- numb) st -fun appl (app as (Sym (n, _), _)) = lookup_context mk_app app :|-- (fn - SOME app' => Scan.succeed app' - | NONE => scan_exn ("unknown function: " ^ quote n)) +fun frac_number st = ( + int_num --| $$ "/" -- int_num --| this "::" -- sort :|-- (fn ((i, j), T) => + numb (i, T) -- numb (j, T) :|-- (fn (n, m) => + appl (I.Sym ("/", []), [n, m])))) st + +fun plain_number st = (int_num --| this "::" -- sort :|-- numb) st + +fun number st = Scan.first [bv_number, frac_number, plain_number] st fun constant st = ((sym >> rpair []) :|-- appl) st @@ -442,24 +345,27 @@ SOME e => Scan.succeed e | NONE => scan_exn ("unknown term id: " ^ quote (string_of_int i))))) st -fun arg st = Scan.first [expr_id, number, bv_number, constant] st +fun arg st = Scan.first [expr_id, number, constant] st fun application st = par ((sym -- Scan.repeat1 (sep arg)) :|-- appl) st fun variables st = par (this "vars" |-- seps1 (par (name |-- sep sort))) st -fun patterns st = seps (par ((this ":pat" || this ":nopat") |-- seps1 id)) st +fun pats st = seps (par ((this ":pat" || this ":nopat") |-- seps1 id)) st + +fun pattern st = par (this "pattern" |-- Scan.repeat1 (sep arg) >> + (the o mk_fun (K (SOME @{cterm True})))) st fun quant_kind st = st |> ( this "forall" >> K (mk_forall o theory_of) || this "exists" >> K (mk_exists o theory_of)) fun quantifier st = - (par (quant_kind -- sep variables --| patterns -- sep arg) :|-- + (par (quant_kind -- sep variables --| pats -- sep arg) :|-- lookup_context (fn cx => fn ((mk_q, Ts), body) => mk_q cx Ts body)) st fun expr k = - Scan.first [bound, quantifier, application, number, bv_number, constant] :|-- + Scan.first [bound, quantifier, pattern, application, number, constant] :|-- with_context (pair NONE oo add_expr k) fun rule_name st = ((name >> `(Symtab.lookup rule_names)) :|-- (fn