diff -r eb9f5ee249f9 -r bdaa0eb0fc74 src/HOL/HOLCF/IOA/TLS.thy --- a/src/HOL/HOLCF/IOA/TLS.thy Sat Jan 16 16:37:45 2016 +0100 +++ b/src/HOL/HOLCF/IOA/TLS.thy Sat Jan 16 23:24:50 2016 +0100 @@ -34,13 +34,10 @@ where "xt2 P tr = P (fst (snd tr))" definition ex2seqC :: "('a, 's) pairs \ ('s \ ('a option, 's) transition Seq)" -where - "ex2seqC = (fix$(LAM h ex. (%s. case ex of - nil => (s,None,s)\nil - | x##xs => (flift1 (%pr. - (s,Some (fst pr), snd pr)\ (h$xs) (snd pr)) - $x) - )))" + where "ex2seqC = + (fix $ (LAM h ex. (\s. case ex of + nil \ (s, None, s) \ nil + | x ## xs \ (flift1 (\pr. (s, Some (fst pr), snd pr) \ (h $ xs) (snd pr)) $ x))))" definition ex2seq :: "('a, 's) execution \ ('a option, 's) transition Seq" where "ex2seq ex = (ex2seqC $ (mkfin (snd ex))) (fst ex)" @@ -56,16 +53,9 @@ axiomatization -where - -mkfin_UU: - "mkfin UU = nil" and - -mkfin_nil: - "mkfin nil =nil" and - -mkfin_cons: - "(mkfin (a\s)) = (a\(mkfin s))" +where mkfin_UU [simp]: "mkfin UU = nil" + and mkfin_nil [simp]: "mkfin nil = nil" + and mkfin_cons [simp]: "mkfin (a \ s) = a \ mkfin s" lemmas [simp del] = HOL.ex_simps HOL.all_simps split_paired_Ex @@ -75,12 +65,12 @@ subsection \ex2seqC\ -lemma ex2seqC_unfold: "ex2seqC = (LAM ex. (%s. case ex of - nil => (s,None,s)\nil - | x##xs => (flift1 (%pr. - (s,Some (fst pr), snd pr)\ (ex2seqC$xs) (snd pr)) - $x) - ))" +lemma ex2seqC_unfold: + "ex2seqC = + (LAM ex. (\s. case ex of + nil \ (s, None, s) \ nil + | x ## xs \ + (flift1 (\pr. (s, Some (fst pr), snd pr) \ (ex2seqC $ xs) (snd pr)) $ x)))" apply (rule trans) apply (rule fix_eq4) apply (rule ex2seqC_def) @@ -88,43 +78,38 @@ apply (simp add: flift1_def) done -lemma ex2seqC_UU: "(ex2seqC $UU) s=UU" +lemma ex2seqC_UU [simp]: "(ex2seqC $ UU) s = UU" apply (subst ex2seqC_unfold) apply simp done -lemma ex2seqC_nil: "(ex2seqC $nil) s = (s,None,s)\nil" +lemma ex2seqC_nil [simp]: "(ex2seqC $ nil) s = (s, None, s) \ nil" apply (subst ex2seqC_unfold) apply simp done -lemma ex2seqC_cons: "(ex2seqC $((a,t)\xs)) s = (s,Some a,t)\ ((ex2seqC$xs) t)" +lemma ex2seqC_cons [simp]: "(ex2seqC $ ((a, t) \ xs)) s = (s, Some a,t ) \ (ex2seqC $ xs) t" apply (rule trans) apply (subst ex2seqC_unfold) apply (simp add: Consq_def flift1_def) apply (simp add: Consq_def flift1_def) done -declare ex2seqC_UU [simp] ex2seqC_nil [simp] ex2seqC_cons [simp] - - -declare mkfin_UU [simp] mkfin_nil [simp] mkfin_cons [simp] - -lemma ex2seq_UU: "ex2seq (s, UU) = (s,None,s)\nil" +lemma ex2seq_UU: "ex2seq (s, UU) = (s, None, s) \ nil" by (simp add: ex2seq_def) -lemma ex2seq_nil: "ex2seq (s, nil) = (s,None,s)\nil" +lemma ex2seq_nil: "ex2seq (s, nil) = (s, None, s) \ nil" by (simp add: ex2seq_def) -lemma ex2seq_cons: "ex2seq (s, (a,t)\ex) = (s,Some a,t) \ ex2seq (t, ex)" +lemma ex2seq_cons: "ex2seq (s, (a, t) \ ex) = (s, Some a, t) \ ex2seq (t, ex)" by (simp add: ex2seq_def) declare ex2seqC_UU [simp del] ex2seqC_nil [simp del] ex2seqC_cons [simp del] declare ex2seq_UU [simp] ex2seq_nil [simp] ex2seq_cons [simp] -lemma ex2seq_nUUnnil: "ex2seq exec ~= UU & ex2seq exec ~= nil" +lemma ex2seq_nUUnnil: "ex2seq exec \ UU \ ex2seq exec \ nil" apply (tactic \pair_tac @{context} "exec" 1\) apply (tactic \Seq_case_simp_tac @{context} "x2" 1\) apply (tactic \pair_tac @{context} "a" 1\) @@ -137,21 +122,20 @@ after the translation via ex2seq !! *) lemma TL_TLS: - "[| ! s a t. (P s) & s \a\A\ t --> (Q t) |] - ==> ex \ (Init (%(s,a,t). P s) \<^bold>\ Init (%(s,a,t). s \a\A\ t) - \<^bold>\ (Next (Init (%(s,a,t).Q s))))" + "\s a t. (P s) \ s \a\A\ t \ (Q t) + \ ex \ (Init (\(s, a, t). P s) \<^bold>\ Init (\(s, a, t). s \a\A\ t) + \<^bold>\ (Next (Init (\(s, a, t). Q s))))" apply (unfold Init_def Next_def temp_sat_def satisfies_def IMPLIES_def AND_def) - apply clarify apply (simp split add: split_if) - (* TL = UU *) + text \\TL = UU\\ apply (rule conjI) apply (tactic \pair_tac @{context} "ex" 1\) apply (tactic \Seq_case_simp_tac @{context} "x2" 1\) apply (tactic \pair_tac @{context} "a" 1\) apply (tactic \Seq_case_simp_tac @{context} "s" 1\) apply (tactic \pair_tac @{context} "a" 1\) - (* TL = nil *) + text \\TL = nil\\ apply (rule conjI) apply (tactic \pair_tac @{context} "ex" 1\) apply (tactic \Seq_case_tac @{context} "x2" 1\) @@ -163,9 +147,8 @@ apply (tactic \pair_tac @{context} "a" 1\) apply (tactic \Seq_case_simp_tac @{context} "s" 1\) apply (tactic \pair_tac @{context} "a" 1\) - (* TL =cons *) + text \\TL = cons\\ apply (simp add: unlift_def) - apply (tactic \pair_tac @{context} "ex" 1\) apply (tactic \Seq_case_simp_tac @{context} "x2" 1\) apply (tactic \pair_tac @{context} "a" 1\)