diff -r f6b0d827240e -r bdc1e2f0a86a src/HOL/Limits.thy --- a/src/HOL/Limits.thy Tue Sep 01 17:25:36 2015 +0200 +++ b/src/HOL/Limits.thy Tue Sep 01 22:32:58 2015 +0200 @@ -22,7 +22,7 @@ (auto simp: subset_eq eventually_principal intro!: exI[of _ "max a b" for a b]) lemma at_infinity_eq_at_top_bot: - "(at_infinity \ real filter) = sup at_top at_bot" + "(at_infinity :: real filter) = sup at_top at_bot" apply (simp add: filter_eq_iff eventually_sup eventually_at_infinity eventually_at_top_linorder eventually_at_bot_linorder) apply safe @@ -872,7 +872,7 @@ using assms unfolding continuous_on_def by (fast intro: tendsto_sgn) lemma filterlim_at_infinity: - fixes f :: "_ \ 'a\real_normed_vector" + fixes f :: "_ \ 'a::real_normed_vector" assumes "0 \ c" shows "(LIM x F. f x :> at_infinity) \ (\r>c. eventually (\x. r \ norm (f x)) F)" unfolding filterlim_iff eventually_at_infinity @@ -983,7 +983,7 @@ qed lemma tendsto_inverse_0: - fixes x :: "_ \ 'a\real_normed_div_algebra" + fixes x :: "_ \ 'a::real_normed_div_algebra" shows "(inverse ---> (0::'a)) at_infinity" unfolding tendsto_Zfun_iff diff_0_right Zfun_def eventually_at_infinity proof safe @@ -1041,7 +1041,7 @@ unfolding filterlim_def at_top_to_right filtermap_filtermap .. lemma filterlim_inverse_at_infinity: - fixes x :: "_ \ 'a\{real_normed_div_algebra, division_ring}" + fixes x :: "_ \ 'a::{real_normed_div_algebra, division_ring}" shows "filterlim inverse at_infinity (at (0::'a))" unfolding filterlim_at_infinity[OF order_refl] proof safe @@ -1053,7 +1053,7 @@ qed lemma filterlim_inverse_at_iff: - fixes g :: "'a \ 'b\{real_normed_div_algebra, division_ring}" + fixes g :: "'a \ 'b::{real_normed_div_algebra, division_ring}" shows "(LIM x F. inverse (g x) :> at 0) \ (LIM x F. g x :> at_infinity)" unfolding filterlim_def filtermap_filtermap[symmetric] proof @@ -1078,7 +1078,7 @@ lemma at_to_infinity: - fixes x :: "'a \ {real_normed_field,field}" + fixes x :: "'a :: {real_normed_field,field}" shows "(at (0::'a)) = filtermap inverse at_infinity" proof (rule antisym) have "(inverse ---> (0::'a)) at_infinity" @@ -1226,7 +1226,7 @@ qed lemma tendsto_divide_0: - fixes f :: "_ \ 'a\{real_normed_div_algebra, division_ring}" + fixes f :: "_ \ 'a::{real_normed_div_algebra, division_ring}" assumes f: "(f ---> c) F" assumes g: "LIM x F. g x :> at_infinity" shows "((\x. f x / g x) ---> 0) F"