diff -r 55b2afc5ddfc -r bdc2c6b40bf2 src/HOL/Old_Number_Theory/Euler.thy --- a/src/HOL/Old_Number_Theory/Euler.thy Sat Jul 05 10:09:01 2014 +0200 +++ b/src/HOL/Old_Number_Theory/Euler.thy Sat Jul 05 11:01:53 2014 +0200 @@ -67,7 +67,7 @@ then have "[j * j = (a * MultInv p j) * j] (mod p)" by (auto simp add: zcong_scalar) then have a:"[j * j = a * (MultInv p j * j)] (mod p)" - by (auto simp add: mult_ac) + by (auto simp add: ac_simps) have "[j * j = a] (mod p)" proof - from assms(1,2,4) have "[MultInv p j * j = 1] (mod p)" @@ -149,7 +149,7 @@ c = "a * (x * MultInv p x)" in zcong_trans, force) apply (frule_tac p = p and x = x in MultInv_prop2, auto) apply (metis StandardRes_SRStar_prop3 mult_1_right mult.commute zcong_sym zcong_zmult_prop1) - apply (auto simp add: mult_ac) + apply (auto simp add: ac_simps) done lemma aux1: "[| 0 < x; (x::int) < a; x \ (a - 1) |] ==> x < a - 1"