diff -r 88f15198950f -r bdeb5024353a src/ZF/func.ML --- a/src/ZF/func.ML Wed Jan 08 15:03:53 1997 +0100 +++ b/src/ZF/func.ML Wed Jan 08 15:04:27 1997 +0100 @@ -53,11 +53,11 @@ (*Empty function spaces*) goalw thy [Pi_def, function_def] "Pi(0,A) = {0}"; -by (fast_tac eq_cs 1); +by (Fast_tac 1); qed "Pi_empty1"; goalw thy [Pi_def] "!!A a. a:A ==> A->0 = 0"; -by (fast_tac eq_cs 1); +by (Fast_tac 1); qed "Pi_empty2"; (*The empty function*) @@ -67,7 +67,7 @@ (*The singleton function*) goalw thy [Pi_def, function_def] "{} : {a} -> {b}"; -by (fast_tac eq_cs 1); +by (Fast_tac 1); qed "singleton_fun"; Addsimps [empty_fun, singleton_fun]; @@ -245,7 +245,7 @@ (** Images of functions **) goalw thy [lam_def] "!!C A. C <= A ==> (lam x:A.b(x)) `` C = {b(x). x:C}"; -by (fast_tac eq_cs 1); +by (Fast_tac 1); qed "image_lam"; goal thy "!!C A. [| f : Pi(A,B); C <= A |] ==> f``C = {f`x. x:C}"; @@ -291,7 +291,7 @@ qed "restrict_eqI"; goalw thy [restrict_def, lam_def] "domain(restrict(f,C)) = C"; -by (fast_tac eq_cs 1); +by (Fast_tac 1); qed "domain_restrict"; val [prem] = goalw thy [restrict_def] @@ -360,7 +360,7 @@ (** Domain and range of a function/relation **) goalw thy [Pi_def] "!!f. f : Pi(A,B) ==> domain(f)=A"; -by (fast_tac eq_cs 1); +by (Fast_tac 1); qed "domain_of_fun"; goal thy "!!f. [| f : Pi(A,B); a: A |] ==> f`a : range(f)"; @@ -379,7 +379,7 @@ "!!f A B. [| f: A->B; c~:A |] ==> cons(,f) : cons(c,A) -> cons(b,B)"; by (forward_tac [singleton_fun RS fun_disjoint_Un] 1); by (asm_full_simp_tac (FOL_ss addsimps [cons_eq]) 2); -by (fast_tac eq_cs 1); +by (Fast_tac 1); qed "fun_extend"; goal thy @@ -417,6 +417,6 @@ by (etac consE 1); by (ALLGOALS (asm_simp_tac (!simpset addsimps [restrict, fun_extend_apply1, - fun_extend_apply2]))); + fun_extend_apply2]))); qed "cons_fun_eq";