diff -r 1b2acb3ccb29 -r be166bf115d4 src/HOL/Complex/CLim.thy --- a/src/HOL/Complex/CLim.thy Tue May 22 19:47:55 2007 +0200 +++ b/src/HOL/Complex/CLim.thy Tue May 22 19:58:54 2007 +0200 @@ -57,34 +57,6 @@ lemma LIM_cnj_iff: "((%x. cnj (f x)) -- a --> cnj L) = (f -- a --> L)" by (simp add: LIM_def complex_cnj_diff [symmetric]) -(*** NSLIM_not zero and hence LIM_not_zero ***) - -lemma NSCLIM_not_zero: "k \ 0 ==> ~ ((%x::complex. k) -- x --NS> 0)" -apply (auto simp del: star_of_zero simp add: NSLIM_def) -apply (rule_tac x = "hcomplex_of_complex x + hcomplex_of_hypreal epsilon" in exI) -apply (auto intro: Infinitesimal_add_approx_self [THEN approx_sym] - simp del: star_of_zero) -done - -(* [| k \ 0; (%x. k) -- x --NS> 0 |] ==> R *) -lemmas NSCLIM_not_zeroE = NSCLIM_not_zero [THEN notE, standard] - -(*** NSLIM_const hence LIM_const ***) - -lemma NSCLIM_const_eq: "(%x::complex. k) -- x --NS> L ==> k = L" -apply (rule ccontr) -apply (drule NSLIM_zero) -apply (rule NSCLIM_not_zeroE [of "k-L"], auto) -done - -(*** NSLIM and hence LIM are unique ***) - -lemma NSCLIM_unique: "[| f -- (x::complex) --NS> L; f -- x --NS> M |] ==> L = M" -apply (drule (1) NSLIM_diff) -apply (drule NSLIM_minus) -apply (auto dest!: NSCLIM_const_eq [symmetric]) -done - lemma starfun_norm: "( *f* (\x. norm (f x))) = (\x. hnorm (( *f* f) x))" by transfer (rule refl)