diff -r 82c20eaad94a -r be2e772e0adf src/HOL/Wellfounded.thy --- a/src/HOL/Wellfounded.thy Mon Jun 10 08:25:55 2024 +0200 +++ b/src/HOL/Wellfounded.thy Mon Jun 10 08:34:09 2024 +0200 @@ -1065,7 +1065,7 @@ using convertible . qed -lemma wfp_if_convertible_to_wfp: "wfP S \ (\x y. R x y \ S (f x) (f y)) \ wfP R" +lemma wfp_if_convertible_to_wfp: "wfp S \ (\x y. R x y \ S (f x) (f y)) \ wfp R" using wf_if_convertible_to_wf[to_pred, of S R f] by simp text \Converting to @{typ nat} is a very common special case that might be found more easily by @@ -1073,7 +1073,7 @@ lemma wfp_if_convertible_to_nat: fixes f :: "_ \ nat" - shows "(\x y. R x y \ f x < f y) \ wfP R" + shows "(\x y. R x y \ f x < f y) \ wfp R" by (rule wfp_if_convertible_to_wfp[of "(<) :: nat \ nat \ bool", simplified])