diff -r 26b95a6f3f79 -r bf31b35949ce src/HOL/Isar_examples/W_correct.thy --- a/src/HOL/Isar_examples/W_correct.thy Tue Oct 30 17:33:56 2001 +0100 +++ b/src/HOL/Isar_examples/W_correct.thy Tue Oct 30 17:37:25 2001 +0100 @@ -46,8 +46,8 @@ proof - assume "a |- e :: t" thus ?thesis (is "?P a e t") - proof (induct (open) a e t) - case Var + proof induct + case (Var a n) hence "n < length (map ($ s) a)" by simp hence "map ($ s) a |- Var n :: map ($ s) a ! n" by (rule has_type.Var) @@ -57,7 +57,7 @@ by (simp only: app_subst_list) finally show "?P a (Var n) (a ! n)" . next - case Abs + case (Abs a e t1 t2) hence "$ s t1 # map ($ s) a |- e :: $ s t2" by (simp add: app_subst_list) hence "map ($ s) a |- Abs e :: $ s t1 -> $ s t2" @@ -66,7 +66,7 @@ by (simp add: app_subst_list) next case App - thus "?P a (App e1 e2) t1" by (simp add: has_type.App) + thus ?case by (simp add: has_type.App) qed qed