diff -r 41da7025e59c -r bfd7f5c3bf69 src/HOL/Multivariate_Analysis/Derivative.thy --- a/src/HOL/Multivariate_Analysis/Derivative.thy Thu May 06 23:11:57 2010 +0200 +++ b/src/HOL/Multivariate_Analysis/Derivative.thy Thu May 06 23:11:57 2010 +0200 @@ -810,7 +810,7 @@ guess k using real_lbound_gt_zero[OF d[THEN conjunct1] d'[THEN conjunct1]] .. note k=this show ?case apply(rule_tac x=k in exI,rule) defer proof(rule,rule) fix z assume as:"norm(z - y) < k" hence "norm (g z - g y - g' (z - y)) \ e / B * norm(g z - g y)" using d' k by auto - also have "\ \ e * norm(z - y)" unfolding mult_frac_num pos_divide_le_eq[OF `B>0`] + also have "\ \ e * norm(z - y)" unfolding times_divide_eq_left pos_divide_le_eq[OF `B>0`] using lem2[THEN spec[where x=z]] using k as using `e>0` by(auto simp add:field_simps) finally show "norm (g z - g y - g' (z - y)) \ e * norm (z - y)" by simp qed(insert k, auto) qed qed