diff -r bafb24c150c1 -r c0401da7726d src/HOL/Infinite_Set.thy --- a/src/HOL/Infinite_Set.thy Fri May 21 21:14:18 2004 +0200 +++ b/src/HOL/Infinite_Set.thy Fri May 21 21:14:52 2004 +0200 @@ -245,8 +245,8 @@ assumes inf: "infinite (S::'a set)" shows "\f. inj (f::nat \ 'a) \ range f \ S" proof - - def Sseq \ "nat_rec S (\n T. T - {\ e. e \ T})" - def pick \ "\n. (\ e. e \ Sseq n)" + def Sseq \ "nat_rec S (\n T. T - {SOME e. e \ T})" + def pick \ "\n. (SOME e. e \ Sseq n)" have Sseq_inf: "\n. infinite (Sseq n)" proof - fix n