diff -r 6af79184bef3 -r c184ec919c70 src/HOL/NthRoot.thy --- a/src/HOL/NthRoot.thy Fri Jul 08 23:43:11 2016 +0200 +++ b/src/HOL/NthRoot.thy Sat Jul 09 13:26:16 2016 +0200 @@ -246,7 +246,7 @@ have "continuous_on ({0..} \ {.. 0}) (\x. if 0 < x then x ^ n else - ((-x) ^ n) :: real)" using n by (intro continuous_on_If continuous_intros) auto then have "continuous_on UNIV ?f" - by (rule continuous_on_cong[THEN iffD1, rotated 2]) (auto simp: not_less sgn_neg le_less n) + by (rule continuous_on_cong[THEN iffD1, rotated 2]) (auto simp: not_less le_less n) then have [simp]: "\x. isCont ?f x" by (simp add: continuous_on_eq_continuous_at) @@ -654,8 +654,7 @@ (simp_all add: at_infinity_eq_at_top_bot) { fix n :: nat assume "2 < n" have "1 + (real (n - 1) * n) / 2 * x n^2 = 1 + of_nat (n choose 2) * x n^2" - using \2 < n\ unfolding gbinomial_def binomial_gbinomial - by (simp add: atLeast0AtMost lessThan_Suc field_simps of_nat_diff numeral_2_eq_2) + by (auto simp add: choose_two of_nat_div mod_eq_0_iff_dvd) also have "\ \ (\k\{0, 2}. of_nat (n choose k) * x n^k)" by (simp add: x_def) also have "\ \ (\k=0..n. of_nat (n choose k) * x n^k)" @@ -692,8 +691,7 @@ (simp_all add: at_infinity_eq_at_top_bot) { fix n :: nat assume "1 < n" have "1 + x n * n = 1 + of_nat (n choose 1) * x n^1" - using \1 < n\ unfolding gbinomial_def binomial_gbinomial - by (simp add: lessThan_Suc) + by (simp add: choose_one) also have "\ \ (\k\{0, 1}. of_nat (n choose k) * x n^k)" by (simp add: x_def) also have "\ \ (\k=0..n. of_nat (n choose k) * x n^k)"