diff -r 9afd9b9c47d0 -r c40ce2de2020 src/HOL/ZF/LProd.thy --- a/src/HOL/ZF/LProd.thy Sun Jun 04 10:52:47 2006 +0200 +++ b/src/HOL/ZF/LProd.thy Mon Jun 05 14:22:58 2006 +0200 @@ -89,7 +89,7 @@ shows "wf (lprod R)" proof - have subset: "lprod (R^+) \ inv_image (mult (R^+)) multiset_of" - by (auto simp add: inv_image_def lprod_implies_mult trans_trancl) + by (auto simp add: lprod_implies_mult trans_trancl) note lprodtrancl = wf_subset[OF wf_inv_image[where r="mult (R^+)" and f="multiset_of", OF wf_mult[OF wf_trancl[OF wf_R]]], OF subset] note lprod = wf_subset[OF lprodtrancl, where p="lprod R", OF lprod_subset, simplified] @@ -122,7 +122,7 @@ assumes wfR: "wf R" shows "wf (gprod_2_1 R)" proof - have "gprod_2_1 R \ inv_image (lprod R) (\ (a,b). [a,b])" - by (auto simp add: inv_image_def gprod_2_1_def lprod_2_1 lprod_2_2) + by (auto simp add: gprod_2_1_def lprod_2_1 lprod_2_2) with wfR show ?thesis by (rule_tac wf_subset, auto) qed @@ -131,7 +131,7 @@ assumes wfR: "wf R" shows "wf (gprod_2_2 R)" proof - have "gprod_2_2 R \ inv_image (lprod R) (\ (a,b). [a,b])" - by (auto simp add: inv_image_def gprod_2_2_def lprod_2_3 lprod_2_4) + by (auto simp add: gprod_2_2_def lprod_2_3 lprod_2_4) with wfR show ?thesis by (rule_tac wf_subset, auto) qed