diff -r 634cd44bb1d3 -r c49a8ebd30cc src/Doc/Isar_Ref/First_Order_Logic.thy --- a/src/Doc/Isar_Ref/First_Order_Logic.thy Thu Nov 05 00:02:30 2015 +0100 +++ b/src/Doc/Isar_Ref/First_Order_Logic.thy Thu Nov 05 00:17:13 2015 +0100 @@ -357,10 +357,10 @@ theorem assumes "\x. \y. R x y" shows "\y. \x. R x y" -proof -- \\\\ introduction\ - obtain x where "\y. R x y" using \\x. \y. R x y\ .. -- \\\\ elimination\ - fix y have "R x y" using \\y. R x y\ .. -- \\\\ destruction\ - then show "\x. R x y" .. -- \\\\ introduction\ +proof \ \\\\ introduction\ + obtain x where "\y. R x y" using \\x. \y. R x y\ .. \ \\\\ elimination\ + fix y have "R x y" using \\y. R x y\ .. \ \\\\ destruction\ + then show "\x. R x y" .. \ \\\\ introduction\ qed