diff -r 972fecd8907a -r c4abe6582ee5 src/HOL/HOLCF/Fix.thy --- a/src/HOL/HOLCF/Fix.thy Tue Dec 10 21:43:04 2024 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,247 +0,0 @@ -(* Title: HOL/HOLCF/Fix.thy - Author: Franz Regensburger - Author: Brian Huffman -*) - -section \Fixed point operator and admissibility\ - -theory Fix - imports Cfun -begin - -default_sort pcpo - - -subsection \Iteration\ - -primrec iterate :: "nat \ ('a::cpo \ 'a) \ ('a \ 'a)" - where - "iterate 0 = (\ F x. x)" - | "iterate (Suc n) = (\ F x. F\(iterate n\F\x))" - -text \Derive inductive properties of iterate from primitive recursion\ - -lemma iterate_0 [simp]: "iterate 0\F\x = x" - by simp - -lemma iterate_Suc [simp]: "iterate (Suc n)\F\x = F\(iterate n\F\x)" - by simp - -declare iterate.simps [simp del] - -lemma iterate_Suc2: "iterate (Suc n)\F\x = iterate n\F\(F\x)" - by (induct n) simp_all - -lemma iterate_iterate: "iterate m\F\(iterate n\F\x) = iterate (m + n)\F\x" - by (induct m) simp_all - -text \The sequence of function iterations is a chain.\ - -lemma chain_iterate [simp]: "chain (\i. iterate i\F\\)" - by (rule chainI, unfold iterate_Suc2, rule monofun_cfun_arg, rule minimal) - - -subsection \Least fixed point operator\ - -definition "fix" :: "('a \ 'a) \ 'a" - where "fix = (\ F. \i. iterate i\F\\)" - -text \Binder syntax for \<^term>\fix\\ - -abbreviation fix_syn :: "('a \ 'a) \ 'a" (binder \\ \ 10) - where "fix_syn (\x. f x) \ fix\(\ x. f x)" - -notation (ASCII) - fix_syn (binder \FIX \ 10) - -text \Properties of \<^term>\fix\\ - -text \direct connection between \<^term>\fix\ and iteration\ - -lemma fix_def2: "fix\F = (\i. iterate i\F\\)" - by (simp add: fix_def) - -lemma iterate_below_fix: "iterate n\f\\ \ fix\f" - unfolding fix_def2 - using chain_iterate by (rule is_ub_thelub) - -text \ - Kleene's fixed point theorems for continuous functions in pointed - omega cpo's -\ - -lemma fix_eq: "fix\F = F\(fix\F)" - apply (simp add: fix_def2) - apply (subst lub_range_shift [of _ 1, symmetric]) - apply (rule chain_iterate) - apply (subst contlub_cfun_arg) - apply (rule chain_iterate) - apply simp - done - -lemma fix_least_below: "F\x \ x \ fix\F \ x" - apply (simp add: fix_def2) - apply (rule lub_below) - apply (rule chain_iterate) - apply (induct_tac i) - apply simp - apply simp - apply (erule rev_below_trans) - apply (erule monofun_cfun_arg) - done - -lemma fix_least: "F\x = x \ fix\F \ x" - by (rule fix_least_below) simp - -lemma fix_eqI: - assumes fixed: "F\x = x" - and least: "\z. F\z = z \ x \ z" - shows "fix\F = x" - apply (rule below_antisym) - apply (rule fix_least [OF fixed]) - apply (rule least [OF fix_eq [symmetric]]) - done - -lemma fix_eq2: "f \ fix\F \ f = F\f" - by (simp add: fix_eq [symmetric]) - -lemma fix_eq3: "f \ fix\F \ f\x = F\f\x" - by (erule fix_eq2 [THEN cfun_fun_cong]) - -lemma fix_eq4: "f = fix\F \ f = F\f" - by (erule ssubst) (rule fix_eq) - -lemma fix_eq5: "f = fix\F \ f\x = F\f\x" - by (erule fix_eq4 [THEN cfun_fun_cong]) - -text \strictness of \<^term>\fix\\ - -lemma fix_bottom_iff: "fix\F = \ \ F\\ = \" - apply (rule iffI) - apply (erule subst) - apply (rule fix_eq [symmetric]) - apply (erule fix_least [THEN bottomI]) - done - -lemma fix_strict: "F\\ = \ \ fix\F = \" - by (simp add: fix_bottom_iff) - -lemma fix_defined: "F\\ \ \ \ fix\F \ \" - by (simp add: fix_bottom_iff) - -text \\<^term>\fix\ applied to identity and constant functions\ - -lemma fix_id: "(\ x. x) = \" - by (simp add: fix_strict) - -lemma fix_const: "(\ x. c) = c" - by (subst fix_eq) simp - - -subsection \Fixed point induction\ - -lemma fix_ind: "adm P \ P \ \ (\x. P x \ P (F\x)) \ P (fix\F)" - unfolding fix_def2 - apply (erule admD) - apply (rule chain_iterate) - apply (rule nat_induct, simp_all) - done - -lemma cont_fix_ind: "cont F \ adm P \ P \ \ (\x. P x \ P (F x)) \ P (fix\(Abs_cfun F))" - by (simp add: fix_ind) - -lemma def_fix_ind: "\f \ fix\F; adm P; P \; \x. P x \ P (F\x)\ \ P f" - by (simp add: fix_ind) - -lemma fix_ind2: - assumes adm: "adm P" - assumes 0: "P \" and 1: "P (F\\)" - assumes step: "\x. \P x; P (F\x)\ \ P (F\(F\x))" - shows "P (fix\F)" - unfolding fix_def2 - apply (rule admD [OF adm chain_iterate]) - apply (rule nat_less_induct) - apply (case_tac n) - apply (simp add: 0) - apply (case_tac nat) - apply (simp add: 1) - apply (frule_tac x=nat in spec) - apply (simp add: step) - done - -lemma parallel_fix_ind: - assumes adm: "adm (\x. P (fst x) (snd x))" - assumes base: "P \ \" - assumes step: "\x y. P x y \ P (F\x) (G\y)" - shows "P (fix\F) (fix\G)" -proof - - from adm have adm': "adm (case_prod P)" - unfolding split_def . - have "P (iterate i\F\\) (iterate i\G\\)" for i - by (induct i) (simp add: base, simp add: step) - then have "\i. case_prod P (iterate i\F\\, iterate i\G\\)" - by simp - then have "case_prod P (\i. (iterate i\F\\, iterate i\G\\))" - by - (rule admD [OF adm'], simp, assumption) - then have "case_prod P (\i. iterate i\F\\, \i. iterate i\G\\)" - by (simp add: lub_Pair) - then have "P (\i. iterate i\F\\) (\i. iterate i\G\\)" - by simp - then show "P (fix\F) (fix\G)" - by (simp add: fix_def2) -qed - -lemma cont_parallel_fix_ind: - assumes "cont F" and "cont G" - assumes "adm (\x. P (fst x) (snd x))" - assumes "P \ \" - assumes "\x y. P x y \ P (F x) (G y)" - shows "P (fix\(Abs_cfun F)) (fix\(Abs_cfun G))" - by (rule parallel_fix_ind) (simp_all add: assms) - - -subsection \Fixed-points on product types\ - -text \ - Bekic's Theorem: Simultaneous fixed points over pairs - can be written in terms of separate fixed points. -\ - -lemma fix_cprod: - "fix\(F::'a \ 'b \ 'a \ 'b) = - (\ x. fst (F\(x, \ y. snd (F\(x, y)))), - \ y. snd (F\(\ x. fst (F\(x, \ y. snd (F\(x, y)))), y)))" - (is "fix\F = (?x, ?y)") -proof (rule fix_eqI) - have *: "fst (F\(?x, ?y)) = ?x" - by (rule trans [symmetric, OF fix_eq], simp) - have "snd (F\(?x, ?y)) = ?y" - by (rule trans [symmetric, OF fix_eq], simp) - with * show "F\(?x, ?y) = (?x, ?y)" - by (simp add: prod_eq_iff) -next - fix z - assume F_z: "F\z = z" - obtain x y where z: "z = (x, y)" by (rule prod.exhaust) - from F_z z have F_x: "fst (F\(x, y)) = x" by simp - from F_z z have F_y: "snd (F\(x, y)) = y" by simp - let ?y1 = "\ y. snd (F\(x, y))" - have "?y1 \ y" - by (rule fix_least) (simp add: F_y) - then have "fst (F\(x, ?y1)) \ fst (F\(x, y))" - by (simp add: fst_monofun monofun_cfun) - with F_x have "fst (F\(x, ?y1)) \ x" - by simp - then have *: "?x \ x" - by (simp add: fix_least_below) - then have "snd (F\(?x, y)) \ snd (F\(x, y))" - by (simp add: snd_monofun monofun_cfun) - with F_y have "snd (F\(?x, y)) \ y" - by simp - then have "?y \ y" - by (simp add: fix_least_below) - with z * show "(?x, ?y) \ z" - by simp -qed - -end