diff -r a81ea5d3dd41 -r c4f1bf2acf4c src/HOL/Real/RComplete.ML --- a/src/HOL/Real/RComplete.ML Sat Dec 30 22:03:47 2000 +0100 +++ b/src/HOL/Real/RComplete.ML Sat Dec 30 22:13:18 2000 +0100 @@ -8,6 +8,10 @@ claset_ref() := claset() delWrapper "bspec"; +Goal "x/#2 + x/#2 = (x::real)"; +by (Simp_tac 1); +qed "real_sum_of_halves"; + (*--------------------------------------------------------- Completeness of reals: use supremum property of preal and theorems about real_preal. Theorems @@ -30,7 +34,7 @@ by Auto_tac; by (dtac bspec 1 THEN assume_tac 1); by (ftac bspec 1 THEN assume_tac 1); -by (dtac real_less_trans 1 THEN assume_tac 1); +by (dtac order_less_trans 1 THEN assume_tac 1); by (dtac ((rename_numerals real_gt_zero_preal_Ex) RS iffD1) 1 THEN etac exE 1); by (res_inst_tac [("x","ya")] exI 1); @@ -137,14 +141,6 @@ by (Auto_tac); qed "lemma_le_swap2"; -Goal "[| (x::real) + (-X) + #1 <= S; xa < x |] ==> xa + (-X) + #1 <= S"; -by (Auto_tac); -qed "lemma_real_complete2"; - -Goal "[| (x::real) + (-X) + #1 <= S; xa < x |] ==> xa <= S + X + (-#1)"; (**) -by (Auto_tac); -qed "lemma_real_complete2a"; - Goal "[| (x::real) + (-X) + #1 <= S; xa <= x |] ==> xa <= S + X + (-#1)"; by (Auto_tac); qed "lemma_real_complete2b"; @@ -184,7 +180,7 @@ by (ftac isLubD2 1 THEN assume_tac 2); by (Blast_tac 1); by (rtac lemma_real_complete2b 1); -by (etac real_less_imp_le 2); +by (etac order_less_imp_le 2); by (blast_tac (claset() addSIs [isLubD2]) 1 THEN Step_tac 1); by (full_simp_tac (simpset() addsimps [real_add_assoc]) 1); by (blast_tac (claset() addDs [isUbD] addSIs [setleI RS isUbI] @@ -218,16 +214,16 @@ by (blast_tac (claset() addSIs [isUbI,setleI]) 2); by (dres_inst_tac [("y","t+(-x)")] isLub_le_isUb 1); by (dres_inst_tac [("x","-t")] real_add_left_le_mono1 2); -by (auto_tac (claset() addDs [real_le_less_trans, - (real_minus_zero_less_iff2 RS iffD2)], - simpset() addsimps [real_less_not_refl,real_add_assoc RS sym])); +by (auto_tac (claset() addDs [order_le_less_trans, + real_minus_zero_less_iff2 RS iffD2], + simpset() addsimps [real_add_assoc RS sym])); qed "reals_Archimedean"; Goal "EX n. (x::real) < real_of_posnat n"; by (res_inst_tac [("R1.0","x"),("R2.0","#0")] real_linear_less2 1); by (res_inst_tac [("x","0")] exI 1); by (res_inst_tac [("x","0")] exI 2); -by (auto_tac (claset() addEs [real_less_trans], +by (auto_tac (claset() addEs [order_less_trans], simpset() addsimps [real_of_posnat_one,real_zero_less_one])); by (ftac ((rename_numerals real_inverse_gt_zero) RS reals_Archimedean) 1); by (Step_tac 1 THEN res_inst_tac [("x","n")] exI 1);