diff -r 10e723e54076 -r c5f54c04a1aa src/HOL/Int.thy --- a/src/HOL/Int.thy Wed Mar 17 19:55:07 2010 +0100 +++ b/src/HOL/Int.thy Thu Mar 18 13:14:54 2010 +0100 @@ -86,7 +86,7 @@ text{*Reduces equality on abstractions to equality on representatives: @{prop "\x \ Integ; y \ Integ\ \ (Abs_Integ x = Abs_Integ y) = (x=y)"} *} -declare Abs_Integ_inject [simp,noatp] Abs_Integ_inverse [simp,noatp] +declare Abs_Integ_inject [simp,no_atp] Abs_Integ_inverse [simp,no_atp] text{*Case analysis on the representation of an integer as an equivalence class of pairs of naturals.*} @@ -522,7 +522,7 @@ It is proved here because attribute @{text arith_split} is not available in theory @{text Rings}. But is it really better than just rewriting with @{text abs_if}?*} -lemma abs_split [arith_split,noatp]: +lemma abs_split [arith_split,no_atp]: "P(abs(a::'a::linordered_idom)) = ((0 \ a --> P a) & (a < 0 --> P(-a)))" by (force dest: order_less_le_trans simp add: abs_if linorder_not_less) @@ -1875,16 +1875,16 @@ text{*These are actually for fields, like real: but where else to put them?*} -lemmas zero_less_divide_iff_number_of [simp, noatp] = +lemmas zero_less_divide_iff_number_of [simp, no_atp] = zero_less_divide_iff [of "number_of w", standard] -lemmas divide_less_0_iff_number_of [simp, noatp] = +lemmas divide_less_0_iff_number_of [simp, no_atp] = divide_less_0_iff [of "number_of w", standard] -lemmas zero_le_divide_iff_number_of [simp, noatp] = +lemmas zero_le_divide_iff_number_of [simp, no_atp] = zero_le_divide_iff [of "number_of w", standard] -lemmas divide_le_0_iff_number_of [simp, noatp] = +lemmas divide_le_0_iff_number_of [simp, no_atp] = divide_le_0_iff [of "number_of w", standard] @@ -1897,53 +1897,53 @@ text {*These laws simplify inequalities, moving unary minus from a term into the literal.*} -lemmas less_minus_iff_number_of [simp, noatp] = +lemmas less_minus_iff_number_of [simp, no_atp] = less_minus_iff [of "number_of v", standard] -lemmas le_minus_iff_number_of [simp, noatp] = +lemmas le_minus_iff_number_of [simp, no_atp] = le_minus_iff [of "number_of v", standard] -lemmas equation_minus_iff_number_of [simp, noatp] = +lemmas equation_minus_iff_number_of [simp, no_atp] = equation_minus_iff [of "number_of v", standard] -lemmas minus_less_iff_number_of [simp, noatp] = +lemmas minus_less_iff_number_of [simp, no_atp] = minus_less_iff [of _ "number_of v", standard] -lemmas minus_le_iff_number_of [simp, noatp] = +lemmas minus_le_iff_number_of [simp, no_atp] = minus_le_iff [of _ "number_of v", standard] -lemmas minus_equation_iff_number_of [simp, noatp] = +lemmas minus_equation_iff_number_of [simp, no_atp] = minus_equation_iff [of _ "number_of v", standard] text{*To Simplify Inequalities Where One Side is the Constant 1*} -lemma less_minus_iff_1 [simp,noatp]: +lemma less_minus_iff_1 [simp,no_atp]: fixes b::"'b::{linordered_idom,number_ring}" shows "(1 < - b) = (b < -1)" by auto -lemma le_minus_iff_1 [simp,noatp]: +lemma le_minus_iff_1 [simp,no_atp]: fixes b::"'b::{linordered_idom,number_ring}" shows "(1 \ - b) = (b \ -1)" by auto -lemma equation_minus_iff_1 [simp,noatp]: +lemma equation_minus_iff_1 [simp,no_atp]: fixes b::"'b::number_ring" shows "(1 = - b) = (b = -1)" by (subst equation_minus_iff, auto) -lemma minus_less_iff_1 [simp,noatp]: +lemma minus_less_iff_1 [simp,no_atp]: fixes a::"'b::{linordered_idom,number_ring}" shows "(- a < 1) = (-1 < a)" by auto -lemma minus_le_iff_1 [simp,noatp]: +lemma minus_le_iff_1 [simp,no_atp]: fixes a::"'b::{linordered_idom,number_ring}" shows "(- a \ 1) = (-1 \ a)" by auto -lemma minus_equation_iff_1 [simp,noatp]: +lemma minus_equation_iff_1 [simp,no_atp]: fixes a::"'b::number_ring" shows "(- a = 1) = (a = -1)" by (subst minus_equation_iff, auto) @@ -1951,16 +1951,16 @@ text {*Cancellation of constant factors in comparisons (@{text "<"} and @{text "\"}) *} -lemmas mult_less_cancel_left_number_of [simp, noatp] = +lemmas mult_less_cancel_left_number_of [simp, no_atp] = mult_less_cancel_left [of "number_of v", standard] -lemmas mult_less_cancel_right_number_of [simp, noatp] = +lemmas mult_less_cancel_right_number_of [simp, no_atp] = mult_less_cancel_right [of _ "number_of v", standard] -lemmas mult_le_cancel_left_number_of [simp, noatp] = +lemmas mult_le_cancel_left_number_of [simp, no_atp] = mult_le_cancel_left [of "number_of v", standard] -lemmas mult_le_cancel_right_number_of [simp, noatp] = +lemmas mult_le_cancel_right_number_of [simp, no_atp] = mult_le_cancel_right [of _ "number_of v", standard]