diff -r 966974a7a5b3 -r c613cd06d5cf doc-src/TutorialI/Recdef/document/simplification.tex --- a/doc-src/TutorialI/Recdef/document/simplification.tex Fri Jul 28 13:04:59 2000 +0200 +++ b/doc-src/TutorialI/Recdef/document/simplification.tex Fri Jul 28 16:02:51 2000 +0200 @@ -79,9 +79,9 @@ derived conditional ones. For \isa{gcd} it means we have to prove% \end{isamarkuptext}% \isacommand{lemma}~[simp]:~{"}gcd~(m,~0)~=~m{"}\isanewline -\isacommand{apply}(simp)\isacommand{.}\isanewline +\isacommand{by}(simp)\isanewline \isacommand{lemma}~[simp]:~{"}n~{\isasymnoteq}~0~{\isasymLongrightarrow}~gcd(m,~n)~=~gcd(n,~m~mod~n){"}\isanewline -\isacommand{apply}(simp)\isacommand{.}% +\isacommand{by}(simp)% \begin{isamarkuptext}% \noindent after which we can disable the original simplification rule:%