diff -r ad73fb6144cf -r c6eecde058e4 src/HOL/Hyperreal/HyperNat.thy --- a/src/HOL/Hyperreal/HyperNat.thy Tue Sep 06 23:16:48 2005 +0200 +++ b/src/HOL/Hyperreal/HyperNat.thy Wed Sep 07 00:48:50 2005 +0200 @@ -11,6 +11,8 @@ imports Star begin +types hypnat = "nat star" +(* constdefs hypnatrel :: "((nat=>nat)*(nat=>nat)) set" "hypnatrel == {p. \X Y. p = ((X::nat=>nat),Y) & @@ -20,20 +22,26 @@ by (auto simp add: quotient_def) instance hypnat :: "{ord, zero, one, plus, times, minus}" .. - +*) consts whn :: hypnat -defs (overloaded) +defs + (* omega is in fact an infinite hypernatural number = [<1,2,3,...>] *) + hypnat_omega_def: "whn == Abs_star(starrel``{%n::nat. n})" + +lemma hypnat_zero_def: "0 == Abs_star(starrel``{%n::nat. 0})" +by (simp only: star_zero_def star_of_def star_n_def) + +lemma hypnat_one_def: "1 == Abs_star(starrel``{%n::nat. 1})" +by (simp only: star_one_def star_of_def star_n_def) (** hypernatural arithmetic **) - +(* hypnat_zero_def: "0 == Abs_hypnat(hypnatrel``{%n::nat. 0})" hypnat_one_def: "1 == Abs_hypnat(hypnatrel``{%n::nat. 1})" - - (* omega is in fact an infinite hypernatural number = [<1,2,3,...>] *) - hypnat_omega_def: "whn == Abs_hypnat(hypnatrel``{%n::nat. n})" - +*) +(* hypnat_add_def: "P + Q == Abs_hypnat(\X \ Rep_hypnat(P). \Y \ Rep_hypnat(Q). hypnatrel``{%n::nat. X n + Y n})" @@ -45,15 +53,9 @@ hypnat_minus_def: "P - Q == Abs_hypnat(\X \ Rep_hypnat(P). \Y \ Rep_hypnat(Q). hypnatrel``{%n::nat. X n - Y n})" - - hypnat_le_def: - "P \ (Q::hypnat) == \X Y. X \ Rep_hypnat(P) & Y \ Rep_hypnat(Q) & - {n::nat. X n \ Y n} \ FreeUltrafilterNat" +*) - hypnat_less_def: "(x < (y::hypnat)) == (x \ y & x \ y)" - - - +(* subsection{*Properties of @{term hypnatrel}*} text{*Proving that @{term hypnatrel} is an equivalence relation*} @@ -78,8 +80,9 @@ apply (simp add: equiv_def refl_def sym_def trans_def hypnatrel_refl) apply (blast intro: hypnatrel_sym hypnatrel_trans) done - +*) (* (hypnatrel `` {x} = hypnatrel `` {y}) = ((x,y) \ hypnatrel) *) +(* lemmas equiv_hypnatrel_iff = eq_equiv_class_iff [OF equiv_hypnatrel UNIV_I UNIV_I, simp] @@ -118,156 +121,124 @@ theorem hypnat_cases [case_names Abs_hypnat, cases type: hypnat]: "(!!x. z = Abs_hypnat(hypnatrel``{x}) ==> P) ==> P" by (rule eq_Abs_hypnat [of z], blast) - +*) subsection{*Hypernat Addition*} - +(* lemma hypnat_add_congruent2: "(%X Y. hypnatrel``{%n. X n + Y n}) respects2 hypnatrel" by (simp add: congruent2_def, auto, ultra) - +*) lemma hypnat_add: - "Abs_hypnat(hypnatrel``{%n. X n}) + Abs_hypnat(hypnatrel``{%n. Y n}) = - Abs_hypnat(hypnatrel``{%n. X n + Y n})" -by (simp add: hypnat_add_def - UN_equiv_class2 [OF equiv_hypnatrel equiv_hypnatrel hypnat_add_congruent2]) + "Abs_star(starrel``{%n. X n}) + Abs_star(starrel``{%n. Y n}) = + Abs_star(starrel``{%n. X n + Y n})" +by (rule hypreal_add) lemma hypnat_add_commute: "(z::hypnat) + w = w + z" -apply (cases z, cases w) -apply (simp add: add_ac hypnat_add) -done +by (rule add_commute) lemma hypnat_add_assoc: "((z1::hypnat) + z2) + z3 = z1 + (z2 + z3)" -apply (cases z1, cases z2, cases z3) -apply (simp add: hypnat_add nat_add_assoc) -done +by (rule add_assoc) lemma hypnat_add_zero_left: "(0::hypnat) + z = z" -apply (cases z) -apply (simp add: hypnat_zero_def hypnat_add) -done +by (rule comm_monoid_add_class.add_0) +(* instance hypnat :: comm_monoid_add by intro_classes (assumption | rule hypnat_add_commute hypnat_add_assoc hypnat_add_zero_left)+ - +*) subsection{*Subtraction inverse on @{typ hypreal}*} - +(* lemma hypnat_minus_congruent2: - "(%X Y. hypnatrel``{%n. X n - Y n}) respects2 hypnatrel" + "(%X Y. starrel``{%n. X n - Y n}) respects2 starrel" by (simp add: congruent2_def, auto, ultra) - +*) lemma hypnat_minus: - "Abs_hypnat(hypnatrel``{%n. X n}) - Abs_hypnat(hypnatrel``{%n. Y n}) = - Abs_hypnat(hypnatrel``{%n. X n - Y n})" -by (simp add: hypnat_minus_def - UN_equiv_class2 [OF equiv_hypnatrel equiv_hypnatrel hypnat_minus_congruent2]) + "Abs_star(starrel``{%n. X n}) - Abs_star(starrel``{%n. Y n}) = + Abs_star(starrel``{%n. X n - Y n})" +by (rule hypreal_diff) -lemma hypnat_minus_zero: "z - z = (0::hypnat)" -apply (cases z) -apply (simp add: hypnat_zero_def hypnat_minus) -done +lemma hypnat_minus_zero: "!!z. z - z = (0::hypnat)" +by transfer (rule diff_self_eq_0) -lemma hypnat_diff_0_eq_0: "(0::hypnat) - n = 0" -apply (cases n) -apply (simp add: hypnat_minus hypnat_zero_def) -done +lemma hypnat_diff_0_eq_0: "!!n. (0::hypnat) - n = 0" +by transfer (rule diff_0_eq_0) declare hypnat_minus_zero [simp] hypnat_diff_0_eq_0 [simp] -lemma hypnat_add_is_0: "(m+n = (0::hypnat)) = (m=0 & n=0)" -apply (cases m, cases n) -apply (auto intro: FreeUltrafilterNat_subset dest: FreeUltrafilterNat_Int simp add: hypnat_zero_def hypnat_add) -done +lemma hypnat_add_is_0: "!!m n. (m+n = (0::hypnat)) = (m=0 & n=0)" +by transfer (rule add_is_0) declare hypnat_add_is_0 [iff] -lemma hypnat_diff_diff_left: "(i::hypnat) - j - k = i - (j+k)" -apply (cases i, cases j, cases k) -apply (simp add: hypnat_minus hypnat_add diff_diff_left) -done +lemma hypnat_diff_diff_left: "!!i j k. (i::hypnat) - j - k = i - (j+k)" +by transfer (rule diff_diff_left) -lemma hypnat_diff_commute: "(i::hypnat) - j - k = i-k-j" -by (simp add: hypnat_diff_diff_left hypnat_add_commute) +lemma hypnat_diff_commute: "!!i j k. (i::hypnat) - j - k = i-k-j" +by transfer (rule diff_commute) -lemma hypnat_diff_add_inverse: "((n::hypnat) + m) - n = m" -apply (cases m, cases n) -apply (simp add: hypnat_minus hypnat_add) -done +lemma hypnat_diff_add_inverse: "!!m n. ((n::hypnat) + m) - n = m" +by transfer (rule diff_add_inverse) declare hypnat_diff_add_inverse [simp] -lemma hypnat_diff_add_inverse2: "((m::hypnat) + n) - n = m" -apply (cases m, cases n) -apply (simp add: hypnat_minus hypnat_add) -done +lemma hypnat_diff_add_inverse2: "!!m n. ((m::hypnat) + n) - n = m" +by transfer (rule diff_add_inverse2) declare hypnat_diff_add_inverse2 [simp] -lemma hypnat_diff_cancel: "((k::hypnat) + m) - (k+n) = m - n" -apply (cases k, cases m, cases n) -apply (simp add: hypnat_minus hypnat_add) -done +lemma hypnat_diff_cancel: "!!k m n. ((k::hypnat) + m) - (k+n) = m - n" +by transfer (rule diff_cancel) declare hypnat_diff_cancel [simp] -lemma hypnat_diff_cancel2: "((m::hypnat) + k) - (n+k) = m - n" -by (simp add: hypnat_add_commute [of _ k]) +lemma hypnat_diff_cancel2: "!!k m n. ((m::hypnat) + k) - (n+k) = m - n" +by transfer (rule diff_cancel2) declare hypnat_diff_cancel2 [simp] -lemma hypnat_diff_add_0: "(n::hypnat) - (n+m) = (0::hypnat)" -apply (cases m, cases n) -apply (simp add: hypnat_zero_def hypnat_minus hypnat_add) -done +lemma hypnat_diff_add_0: "!!m n. (n::hypnat) - (n+m) = (0::hypnat)" +by transfer (rule diff_add_0) declare hypnat_diff_add_0 [simp] subsection{*Hyperreal Multiplication*} - +(* lemma hypnat_mult_congruent2: - "(%X Y. hypnatrel``{%n. X n * Y n}) respects2 hypnatrel" + "(%X Y. starrel``{%n. X n * Y n}) respects2 starrel" by (simp add: congruent2_def, auto, ultra) - +*) lemma hypnat_mult: - "Abs_hypnat(hypnatrel``{%n. X n}) * Abs_hypnat(hypnatrel``{%n. Y n}) = - Abs_hypnat(hypnatrel``{%n. X n * Y n})" -by (simp add: hypnat_mult_def - UN_equiv_class2 [OF equiv_hypnatrel equiv_hypnatrel hypnat_mult_congruent2]) + "Abs_star(starrel``{%n. X n}) * Abs_star(starrel``{%n. Y n}) = + Abs_star(starrel``{%n. X n * Y n})" +by (rule hypreal_mult) lemma hypnat_mult_commute: "(z::hypnat) * w = w * z" -by (cases z, cases w, simp add: hypnat_mult mult_ac) +by (rule mult_commute) lemma hypnat_mult_assoc: "((z1::hypnat) * z2) * z3 = z1 * (z2 * z3)" -apply (cases z1, cases z2, cases z3) -apply (simp add: hypnat_mult mult_assoc) -done +by (rule mult_assoc) lemma hypnat_mult_1: "(1::hypnat) * z = z" -apply (cases z) -apply (simp add: hypnat_mult hypnat_one_def) -done +by (rule mult_1_left) -lemma hypnat_diff_mult_distrib: "((m::hypnat) - n) * k = (m * k) - (n * k)" -apply (cases k, cases m, cases n) -apply (simp add: hypnat_mult hypnat_minus diff_mult_distrib) -done +lemma hypnat_diff_mult_distrib: "!!k m n. ((m::hypnat) - n) * k = (m * k) - (n * k)" +by transfer (rule diff_mult_distrib) -lemma hypnat_diff_mult_distrib2: "(k::hypnat) * (m - n) = (k * m) - (k * n)" -by (simp add: hypnat_diff_mult_distrib hypnat_mult_commute [of k]) +lemma hypnat_diff_mult_distrib2: "!!k m n. (k::hypnat) * (m - n) = (k * m) - (k * n)" +by transfer (rule diff_mult_distrib2) lemma hypnat_add_mult_distrib: "((z1::hypnat) + z2) * w = (z1 * w) + (z2 * w)" -apply (cases z1, cases z2, cases w) -apply (simp add: hypnat_mult hypnat_add add_mult_distrib) -done +by (rule left_distrib) lemma hypnat_add_mult_distrib2: "(w::hypnat) * (z1 + z2) = (w * z1) + (w * z2)" -by (simp add: hypnat_mult_commute [of w] hypnat_add_mult_distrib) +by (rule right_distrib) text{*one and zero are distinct*} lemma hypnat_zero_not_eq_one: "(0::hypnat) \ (1::hypnat)" -by (auto simp add: hypnat_zero_def hypnat_one_def) +by (rule zero_neq_one) declare hypnat_zero_not_eq_one [THEN not_sym, simp] - +(* text{*The hypernaturals form a @{text comm_semiring_1_cancel}: *} instance hypnat :: comm_semiring_1_cancel proof @@ -281,64 +252,50 @@ hence "(k+i) - k = (k+j) - k" by simp thus "i=j" by simp qed - +*) subsection{*Properties of The @{text "\"} Relation*} lemma hypnat_le: - "(Abs_hypnat(hypnatrel``{%n. X n}) \ Abs_hypnat(hypnatrel``{%n. Y n})) = + "(Abs_star(starrel``{%n. X n}) \ Abs_star(starrel``{%n. Y n})) = ({n. X n \ Y n} \ FreeUltrafilterNat)" -apply (simp add: hypnat_le_def) -apply (auto intro!: lemma_hypnatrel_refl, ultra) -done +by (rule hypreal_le) lemma hypnat_le_refl: "w \ (w::hypnat)" -apply (cases w) -apply (simp add: hypnat_le) -done +by (rule order_refl) lemma hypnat_le_trans: "[| i \ j; j \ k |] ==> i \ (k::hypnat)" -apply (cases i, cases j, cases k) -apply (simp add: hypnat_le, ultra) -done +by (rule order_trans) lemma hypnat_le_anti_sym: "[| z \ w; w \ z |] ==> z = (w::hypnat)" -apply (cases z, cases w) -apply (simp add: hypnat_le, ultra) -done +by (rule order_antisym) (* Axiom 'order_less_le' of class 'order': *) lemma hypnat_less_le: "((w::hypnat) < z) = (w \ z & w \ z)" -by (simp add: hypnat_less_def) +by (rule order_less_le) +(* instance hypnat :: order by intro_classes (assumption | rule hypnat_le_refl hypnat_le_trans hypnat_le_anti_sym hypnat_less_le)+ - +*) (* Axiom 'linorder_linear' of class 'linorder': *) lemma hypnat_le_linear: "(z::hypnat) \ w | w \ z" -apply (cases z, cases w) -apply (auto simp add: hypnat_le, ultra) -done - +by (rule linorder_linear) +(* instance hypnat :: linorder by intro_classes (rule hypnat_le_linear) - +*) lemma hypnat_add_left_mono: "x \ y ==> z + x \ z + (y::hypnat)" -apply (cases x, cases y, cases z) -apply (auto simp add: hypnat_le hypnat_add) -done +by (rule add_left_mono) lemma hypnat_mult_less_mono2: "[| (0::hypnat) z*x 0 < z ==> z * x < z * y" by (simp add: hypnat_mult_less_mono2) qed - -lemma hypnat_le_zero_cancel [iff]: "(n \ (0::hypnat)) = (n = 0)" -apply (cases n) -apply (simp add: hypnat_zero_def hypnat_le) -done +*) +lemma hypnat_le_zero_cancel [iff]: "!!n. (n \ (0::hypnat)) = (n = 0)" +by transfer (rule le_0_eq) -lemma hypnat_mult_is_0 [simp]: "(m*n = (0::hypnat)) = (m=0 | n=0)" -apply (cases m, cases n) -apply (auto simp add: hypnat_zero_def hypnat_mult, ultra+) -done +lemma hypnat_mult_is_0 [simp]: "!!m n. (m*n = (0::hypnat)) = (m=0 | n=0)" +by transfer (rule mult_is_0) -lemma hypnat_diff_is_0_eq [simp]: "((m::hypnat) - n = 0) = (m \ n)" -apply (cases m, cases n) -apply (simp add: hypnat_le hypnat_minus hypnat_zero_def) -done +lemma hypnat_diff_is_0_eq [simp]: "!!m n. ((m::hypnat) - n = 0) = (m \ n)" +by transfer (rule diff_is_0_eq) subsection{*Theorems for Ordering*} lemma hypnat_less: - "(Abs_hypnat(hypnatrel``{%n. X n}) < Abs_hypnat(hypnatrel``{%n. Y n})) = + "(Abs_star(starrel``{%n. X n}) < Abs_star(starrel``{%n. Y n})) = ({n. X n < Y n} \ FreeUltrafilterNat)" -apply (auto simp add: hypnat_le linorder_not_le [symmetric]) -apply (ultra+) -done +by (rule hypreal_less) -lemma hypnat_not_less0 [iff]: "~ n < (0::hypnat)" -apply (cases n) -apply (auto simp add: hypnat_zero_def hypnat_less) -done +lemma hypnat_not_less0 [iff]: "!!n. ~ n < (0::hypnat)" +by transfer (rule not_less0) lemma hypnat_less_one [iff]: - "(n < (1::hypnat)) = (n=0)" -apply (cases n) -apply (auto simp add: hypnat_zero_def hypnat_one_def hypnat_less) -done + "!!n. (n < (1::hypnat)) = (n=0)" +by transfer (rule less_one) + +lemma hypnat_add_diff_inverse: "!!m n. ~ m n+(m-n) = (m::hypnat)" +by transfer (rule add_diff_inverse) -lemma hypnat_add_diff_inverse: "~ m n+(m-n) = (m::hypnat)" -apply (cases m, cases n) -apply (simp add: hypnat_minus hypnat_add hypnat_less split: nat_diff_split, ultra) -done +lemma hypnat_le_add_diff_inverse [simp]: "!!m n. n \ m ==> n+(m-n) = (m::hypnat)" +by transfer (rule le_add_diff_inverse) -lemma hypnat_le_add_diff_inverse [simp]: "n \ m ==> n+(m-n) = (m::hypnat)" -by (simp add: hypnat_add_diff_inverse linorder_not_less [symmetric]) - -lemma hypnat_le_add_diff_inverse2 [simp]: "n\m ==> (m-n)+n = (m::hypnat)" -by (simp add: hypnat_le_add_diff_inverse hypnat_add_commute) +lemma hypnat_le_add_diff_inverse2 [simp]: "!!m n. n\m ==> (m-n)+n = (m::hypnat)" +by transfer (rule le_add_diff_inverse2) declare hypnat_le_add_diff_inverse2 [OF order_less_imp_le] -lemma hypnat_le0 [iff]: "(0::hypnat) \ n" -by (simp add: linorder_not_less [symmetric]) +lemma hypnat_le0 [iff]: "!!n. (0::hypnat) \ n" +by transfer (rule le0) -lemma hypnat_add_self_le [simp]: "(x::hypnat) \ n + x" -by (insert add_right_mono [of 0 n x], simp) +lemma hypnat_add_self_le [simp]: "!!x n. (x::hypnat) \ n + x" +by transfer (rule le_add2) lemma hypnat_add_one_self_less [simp]: "(x::hypnat) < x + (1::hypnat)" by (insert add_strict_left_mono [OF zero_less_one], auto) @@ -494,10 +437,10 @@ subsection{*Existence of an infinite hypernatural number*} -lemma hypnat_omega: "hypnatrel``{%n::nat. n} \ hypnat" +lemma hypnat_omega: "starrel``{%n::nat. n} \ star" by auto -lemma Rep_hypnat_omega: "Rep_hypnat(whn) \ hypnat" +lemma Rep_star_omega: "Rep_star(whn) \ star" by (simp add: hypnat_omega_def) text{*Existence of infinite number not corresponding to any natural number @@ -530,7 +473,7 @@ lemma hypnat_of_nat_eq: - "hypnat_of_nat m = Abs_hypnat(hypnatrel``{%n::nat. m})" + "hypnat_of_nat m = Abs_star(starrel``{%n::nat. m})" apply (induct m) apply (simp_all add: hypnat_zero_def hypnat_one_def hypnat_add) done @@ -540,13 +483,7 @@ lemma hypnat_omega_gt_SHNat: "n \ Nats ==> n < whn" -apply (auto simp add: hypnat_of_nat_eq hypnat_less_def hypnat_le_def - hypnat_omega_def SHNat_eq) - prefer 2 apply (force dest: FreeUltrafilterNat_not_finite) -apply (auto intro!: exI) -apply (rule cofinite_mem_FreeUltrafilterNat) -apply (simp add: Compl_Collect_le finite_nat_segment) -done +by (auto simp add: hypnat_of_nat_eq hypnat_less hypnat_omega_def SHNat_eq) (* Infinite hypernatural not in embedded Nats *) lemma SHNAT_omega_not_mem [simp]: "whn \ Nats" @@ -595,7 +532,7 @@ lemma HNatInfinite_iff: "HNatInfinite = {N. \n \ Nats. n < N}" apply (auto simp add: HNatInfinite_def SHNat_eq hypnat_of_nat_eq) -apply (rule_tac z = x in eq_Abs_hypnat) +apply (rule_tac z = x in eq_Abs_star) apply (auto elim: HNatInfinite_FreeUltrafilterNat_lemma simp add: hypnat_less FreeUltrafilterNat_Compl_iff1 Collect_neg_eq [symmetric]) @@ -607,24 +544,24 @@ lemma HNatInfinite_FreeUltrafilterNat: "x \ HNatInfinite - ==> \X \ Rep_hypnat x. \u. {n. u < X n}: FreeUltrafilterNat" -apply (cases x) + ==> \X \ Rep_star x. \u. {n. u < X n}: FreeUltrafilterNat" +apply (rule_tac z=x in eq_Abs_star) apply (auto simp add: HNatInfinite_iff SHNat_eq hypnat_of_nat_eq) -apply (rule bexI [OF _ lemma_hypnatrel_refl], clarify) +apply (rule bexI [OF _ lemma_starrel_refl], clarify) apply (auto simp add: hypnat_of_nat_def hypnat_less) done lemma FreeUltrafilterNat_HNatInfinite: - "\X \ Rep_hypnat x. \u. {n. u < X n}: FreeUltrafilterNat + "\X \ Rep_star x. \u. {n. u < X n}: FreeUltrafilterNat ==> x \ HNatInfinite" -apply (cases x) +apply (rule_tac z=x in eq_Abs_star) apply (auto simp add: hypnat_less HNatInfinite_iff SHNat_eq hypnat_of_nat_eq) apply (drule spec, ultra, auto) done lemma HNatInfinite_FreeUltrafilterNat_iff: "(x \ HNatInfinite) = - (\X \ Rep_hypnat x. \u. {n. u < X n}: FreeUltrafilterNat)" + (\X \ Rep_star x. \u. {n. u < X n}: FreeUltrafilterNat)" by (blast intro: HNatInfinite_FreeUltrafilterNat FreeUltrafilterNat_HNatInfinite) @@ -692,7 +629,7 @@ constdefs hypreal_of_hypnat :: "hypnat => hypreal" "hypreal_of_hypnat N == - Abs_star(\X \ Rep_hypnat(N). starrel``{%n::nat. real (X n)})" + Abs_star(\X \ Rep_star(N). starrel``{%n::nat. real (X n)})" lemma HNat_hypreal_of_nat [simp]: "hypreal_of_nat N \ Nats" @@ -704,7 +641,7 @@ by force lemma hypreal_of_hypnat: - "hypreal_of_hypnat (Abs_hypnat(hypnatrel``{%n. X n})) = + "hypreal_of_hypnat (Abs_star(starrel``{%n. X n})) = Abs_star(starrel `` {%n. real (X n)})" apply (simp add: hypreal_of_hypnat_def) apply (rule_tac f = Abs_star in arg_cong) @@ -714,7 +651,7 @@ lemma hypreal_of_hypnat_inject [simp]: "(hypreal_of_hypnat m = hypreal_of_hypnat n) = (m=n)" -apply (cases m, cases n) +apply (rule_tac z=m in eq_Abs_star, rule_tac z=n in eq_Abs_star) apply (auto simp add: hypreal_of_hypnat) done @@ -726,19 +663,19 @@ lemma hypreal_of_hypnat_add [simp]: "hypreal_of_hypnat (m + n) = hypreal_of_hypnat m + hypreal_of_hypnat n" -apply (cases m, cases n) +apply (rule_tac z=m in eq_Abs_star, rule_tac z=n in eq_Abs_star) apply (simp add: hypreal_of_hypnat hypreal_add hypnat_add real_of_nat_add) done lemma hypreal_of_hypnat_mult [simp]: "hypreal_of_hypnat (m * n) = hypreal_of_hypnat m * hypreal_of_hypnat n" -apply (cases m, cases n) +apply (rule_tac z=m in eq_Abs_star, rule_tac z=n in eq_Abs_star) apply (simp add: hypreal_of_hypnat hypreal_mult hypnat_mult real_of_nat_mult) done lemma hypreal_of_hypnat_less_iff [simp]: "(hypreal_of_hypnat n < hypreal_of_hypnat m) = (n < m)" -apply (cases m, cases n) +apply (rule_tac z=m in eq_Abs_star, rule_tac z=n in eq_Abs_star) apply (simp add: hypreal_of_hypnat hypreal_less hypnat_less) done @@ -747,13 +684,13 @@ declare hypreal_of_hypnat_eq_zero_iff [simp] lemma hypreal_of_hypnat_ge_zero [simp]: "0 \ hypreal_of_hypnat n" -apply (cases n) +apply (rule_tac z=n in eq_Abs_star) apply (simp add: hypreal_of_hypnat hypreal_zero_num hypreal_le) done lemma HNatInfinite_inverse_Infinitesimal [simp]: "n \ HNatInfinite ==> inverse (hypreal_of_hypnat n) \ Infinitesimal" -apply (cases n) +apply (rule_tac z=n in eq_Abs_star) apply (auto simp add: hypreal_of_hypnat hypreal_inverse HNatInfinite_FreeUltrafilterNat_iff Infinitesimal_FreeUltrafilterNat_iff2) apply (rule bexI, rule_tac [2] lemma_starrel_refl, auto) @@ -776,17 +713,17 @@ val hypnat_one_def = thm"hypnat_one_def"; val hypnat_omega_def = thm"hypnat_omega_def"; -val hypnatrel_iff = thm "hypnatrel_iff"; -val hypnatrel_in_hypnat = thm "hypnatrel_in_hypnat"; -val lemma_hypnatrel_refl = thm "lemma_hypnatrel_refl"; -val hypnat_empty_not_mem = thm "hypnat_empty_not_mem"; -val Rep_hypnat_nonempty = thm "Rep_hypnat_nonempty"; -val eq_Abs_hypnat = thm "eq_Abs_hypnat"; +val starrel_iff = thm "starrel_iff"; +(* val starrel_in_hypnat = thm "starrel_in_hypnat"; *) +val lemma_starrel_refl = thm "lemma_starrel_refl"; +(* val hypnat_empty_not_mem = thm "hypnat_empty_not_mem"; *) +(* val Rep_star_nonempty = thm "Rep_star_nonempty"; *) +val eq_Abs_star = thm "eq_Abs_star"; val hypnat_add = thm "hypnat_add"; val hypnat_add_commute = thm "hypnat_add_commute"; val hypnat_add_assoc = thm "hypnat_add_assoc"; val hypnat_add_zero_left = thm "hypnat_add_zero_left"; -val hypnat_minus_congruent2 = thm "hypnat_minus_congruent2"; +(* val hypnat_minus_congruent2 = thm "hypnat_minus_congruent2"; *) val hypnat_minus = thm "hypnat_minus"; val hypnat_minus_zero = thm "hypnat_minus_zero"; val hypnat_diff_0_eq_0 = thm "hypnat_diff_0_eq_0"; @@ -798,7 +735,7 @@ val hypnat_diff_cancel = thm "hypnat_diff_cancel"; val hypnat_diff_cancel2 = thm "hypnat_diff_cancel2"; val hypnat_diff_add_0 = thm "hypnat_diff_add_0"; -val hypnat_mult_congruent2 = thm "hypnat_mult_congruent2"; +(* val hypnat_mult_congruent2 = thm "hypnat_mult_congruent2"; *) val hypnat_mult = thm "hypnat_mult"; val hypnat_mult_commute = thm "hypnat_mult_commute"; val hypnat_mult_assoc = thm "hypnat_mult_assoc"; @@ -841,7 +778,7 @@ val hypnat_of_nat_zero_iff = thm "hypnat_of_nat_zero_iff"; val hypnat_of_nat_Suc = thm "hypnat_of_nat_Suc"; val hypnat_omega = thm "hypnat_omega"; -val Rep_hypnat_omega = thm "Rep_hypnat_omega"; +val Rep_star_omega = thm "Rep_star_omega"; val SHNAT_omega_not_mem = thm "SHNAT_omega_not_mem"; val cofinite_mem_FreeUltrafilterNat = thm "cofinite_mem_FreeUltrafilterNat"; val hypnat_omega_gt_SHNat = thm "hypnat_omega_gt_SHNat";