diff -r c6c6c2bc6fe8 -r c71657bbdbc0 src/HOL/Metis_Examples/BigO.thy --- a/src/HOL/Metis_Examples/BigO.thy Mon Jun 06 20:36:35 2011 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,966 +0,0 @@ -(* Title: HOL/Metis_Examples/BigO.thy - Author: Lawrence C Paulson, Cambridge University Computer Laboratory - Author: Jasmin Blanchette, TU Muenchen - -Testing Metis. -*) - -header {* Big O notation *} - -theory BigO -imports - "~~/src/HOL/Decision_Procs/Dense_Linear_Order" - Main - "~~/src/HOL/Library/Function_Algebras" - "~~/src/HOL/Library/Set_Algebras" -begin - -declare [[metis_new_skolemizer]] - -subsection {* Definitions *} - -definition bigo :: "('a => 'b::linordered_idom) => ('a => 'b) set" ("(1O'(_'))") where - "O(f::('a => 'b)) == {h. EX c. ALL x. abs (h x) <= c * abs (f x)}" - -declare [[ sledgehammer_problem_prefix = "BigO__bigo_pos_const" ]] -lemma bigo_pos_const: "(EX (c::'a::linordered_idom). - ALL x. (abs (h x)) <= (c * (abs (f x)))) - = (EX c. 0 < c & (ALL x. (abs(h x)) <= (c * (abs (f x)))))" - apply auto - apply (case_tac "c = 0", simp) - apply (rule_tac x = "1" in exI, simp) - apply (rule_tac x = "abs c" in exI, auto) - apply (metis abs_ge_zero abs_of_nonneg Orderings.xt1(6) abs_mult) - done - -(*** Now various verions with an increasing shrink factor ***) - -sledgehammer_params [isar_proof, isar_shrink_factor = 1] - -lemma (*bigo_pos_const:*) "(EX (c::'a::linordered_idom). - ALL x. (abs (h x)) <= (c * (abs (f x)))) - = (EX c. 0 < c & (ALL x. (abs(h x)) <= (c * (abs (f x)))))" - apply auto - apply (case_tac "c = 0", simp) - apply (rule_tac x = "1" in exI, simp) - apply (rule_tac x = "abs c" in exI, auto) -proof - - fix c :: 'a and x :: 'b - assume A1: "\x. \h x\ \ c * \f x\" - have F1: "\x\<^isub>1\'a\linordered_idom. 0 \ \x\<^isub>1\" by (metis abs_ge_zero) - have F2: "\x\<^isub>1\'a\linordered_idom. 1 * x\<^isub>1 = x\<^isub>1" by (metis mult_1) - have F3: "\x\<^isub>1 x\<^isub>3. x\<^isub>3 \ \h x\<^isub>1\ \ x\<^isub>3 \ c * \f x\<^isub>1\" by (metis A1 order_trans) - have F4: "\x\<^isub>2 x\<^isub>3\'a\linordered_idom. \x\<^isub>3\ * \x\<^isub>2\ = \x\<^isub>3 * x\<^isub>2\" - by (metis abs_mult) - have F5: "\x\<^isub>3 x\<^isub>1\'a\linordered_idom. 0 \ x\<^isub>1 \ \x\<^isub>3 * x\<^isub>1\ = \x\<^isub>3\ * x\<^isub>1" - by (metis abs_mult_pos) - hence "\x\<^isub>1\0. \x\<^isub>1\'a\linordered_idom\ = \1\ * x\<^isub>1" by (metis F2) - hence "\x\<^isub>1\0. \x\<^isub>1\'a\linordered_idom\ = x\<^isub>1" by (metis F2 abs_one) - hence "\x\<^isub>3. 0 \ \h x\<^isub>3\ \ \c * \f x\<^isub>3\\ = c * \f x\<^isub>3\" by (metis F3) - hence "\x\<^isub>3. \c * \f x\<^isub>3\\ = c * \f x\<^isub>3\" by (metis F1) - hence "\x\<^isub>3. (0\'a) \ \f x\<^isub>3\ \ c * \f x\<^isub>3\ = \c\ * \f x\<^isub>3\" by (metis F5) - hence "\x\<^isub>3. (0\'a) \ \f x\<^isub>3\ \ c * \f x\<^isub>3\ = \c * f x\<^isub>3\" by (metis F4) - hence "\x\<^isub>3. c * \f x\<^isub>3\ = \c * f x\<^isub>3\" by (metis F1) - hence "\h x\ \ \c * f x\" by (metis A1) - thus "\h x\ \ \c\ * \f x\" by (metis F4) -qed - -sledgehammer_params [isar_proof, isar_shrink_factor = 2] - -lemma (*bigo_pos_const:*) "(EX (c::'a::linordered_idom). - ALL x. (abs (h x)) <= (c * (abs (f x)))) - = (EX c. 0 < c & (ALL x. (abs(h x)) <= (c * (abs (f x)))))" - apply auto - apply (case_tac "c = 0", simp) - apply (rule_tac x = "1" in exI, simp) - apply (rule_tac x = "abs c" in exI, auto) -proof - - fix c :: 'a and x :: 'b - assume A1: "\x. \h x\ \ c * \f x\" - have F1: "\x\<^isub>1\'a\linordered_idom. 1 * x\<^isub>1 = x\<^isub>1" by (metis mult_1) - have F2: "\x\<^isub>2 x\<^isub>3\'a\linordered_idom. \x\<^isub>3\ * \x\<^isub>2\ = \x\<^isub>3 * x\<^isub>2\" - by (metis abs_mult) - have "\x\<^isub>1\0. \x\<^isub>1\'a\linordered_idom\ = x\<^isub>1" by (metis F1 abs_mult_pos abs_one) - hence "\x\<^isub>3. \c * \f x\<^isub>3\\ = c * \f x\<^isub>3\" by (metis A1 abs_ge_zero order_trans) - hence "\x\<^isub>3. 0 \ \f x\<^isub>3\ \ c * \f x\<^isub>3\ = \c * f x\<^isub>3\" by (metis F2 abs_mult_pos) - hence "\h x\ \ \c * f x\" by (metis A1 abs_ge_zero) - thus "\h x\ \ \c\ * \f x\" by (metis F2) -qed - -sledgehammer_params [isar_proof, isar_shrink_factor = 3] - -lemma (*bigo_pos_const:*) "(EX (c::'a::linordered_idom). - ALL x. (abs (h x)) <= (c * (abs (f x)))) - = (EX c. 0 < c & (ALL x. (abs(h x)) <= (c * (abs (f x)))))" - apply auto - apply (case_tac "c = 0", simp) - apply (rule_tac x = "1" in exI, simp) - apply (rule_tac x = "abs c" in exI, auto) -proof - - fix c :: 'a and x :: 'b - assume A1: "\x. \h x\ \ c * \f x\" - have F1: "\x\<^isub>1\'a\linordered_idom. 1 * x\<^isub>1 = x\<^isub>1" by (metis mult_1) - have F2: "\x\<^isub>3 x\<^isub>1\'a\linordered_idom. 0 \ x\<^isub>1 \ \x\<^isub>3 * x\<^isub>1\ = \x\<^isub>3\ * x\<^isub>1" by (metis abs_mult_pos) - hence "\x\<^isub>1\0. \x\<^isub>1\'a\linordered_idom\ = x\<^isub>1" by (metis F1 abs_one) - hence "\x\<^isub>3. 0 \ \f x\<^isub>3\ \ c * \f x\<^isub>3\ = \c\ * \f x\<^isub>3\" by (metis F2 A1 abs_ge_zero order_trans) - thus "\h x\ \ \c\ * \f x\" by (metis A1 abs_mult abs_ge_zero) -qed - -sledgehammer_params [isar_proof, isar_shrink_factor = 4] - -lemma (*bigo_pos_const:*) "(EX (c::'a::linordered_idom). - ALL x. (abs (h x)) <= (c * (abs (f x)))) - = (EX c. 0 < c & (ALL x. (abs(h x)) <= (c * (abs (f x)))))" - apply auto - apply (case_tac "c = 0", simp) - apply (rule_tac x = "1" in exI, simp) - apply (rule_tac x = "abs c" in exI, auto) -proof - - fix c :: 'a and x :: 'b - assume A1: "\x. \h x\ \ c * \f x\" - have "\x\<^isub>1\'a\linordered_idom. 1 * x\<^isub>1 = x\<^isub>1" by (metis mult_1) - hence "\x\<^isub>3. \c * \f x\<^isub>3\\ = c * \f x\<^isub>3\" - by (metis A1 abs_ge_zero order_trans abs_mult_pos abs_one) - hence "\h x\ \ \c * f x\" by (metis A1 abs_ge_zero abs_mult_pos abs_mult) - thus "\h x\ \ \c\ * \f x\" by (metis abs_mult) -qed - -sledgehammer_params [isar_proof, isar_shrink_factor = 1] - -lemma bigo_alt_def: "O(f) = - {h. EX c. (0 < c & (ALL x. abs (h x) <= c * abs (f x)))}" -by (auto simp add: bigo_def bigo_pos_const) - -declare [[ sledgehammer_problem_prefix = "BigO__bigo_elt_subset" ]] -lemma bigo_elt_subset [intro]: "f : O(g) ==> O(f) <= O(g)" - apply (auto simp add: bigo_alt_def) - apply (rule_tac x = "ca * c" in exI) - apply (rule conjI) - apply (rule mult_pos_pos) - apply (assumption)+ -(*sledgehammer*) - apply (rule allI) - apply (drule_tac x = "xa" in spec)+ - apply (subgoal_tac "ca * abs(f xa) <= ca * (c * abs(g xa))") - apply (erule order_trans) - apply (simp add: mult_ac) - apply (rule mult_left_mono, assumption) - apply (rule order_less_imp_le, assumption) -done - - -declare [[ sledgehammer_problem_prefix = "BigO__bigo_refl" ]] -lemma bigo_refl [intro]: "f : O(f)" -apply (auto simp add: bigo_def) -by (metis mult_1 order_refl) - -declare [[ sledgehammer_problem_prefix = "BigO__bigo_zero" ]] -lemma bigo_zero: "0 : O(g)" -apply (auto simp add: bigo_def func_zero) -by (metis mult_zero_left order_refl) - -lemma bigo_zero2: "O(%x.0) = {%x.0}" - by (auto simp add: bigo_def) - -lemma bigo_plus_self_subset [intro]: - "O(f) \ O(f) <= O(f)" - apply (auto simp add: bigo_alt_def set_plus_def) - apply (rule_tac x = "c + ca" in exI) - apply auto - apply (simp add: ring_distribs func_plus) - apply (blast intro:order_trans abs_triangle_ineq add_mono elim:) -done - -lemma bigo_plus_idemp [simp]: "O(f) \ O(f) = O(f)" - apply (rule equalityI) - apply (rule bigo_plus_self_subset) - apply (rule set_zero_plus2) - apply (rule bigo_zero) -done - -lemma bigo_plus_subset [intro]: "O(f + g) <= O(f) \ O(g)" - apply (rule subsetI) - apply (auto simp add: bigo_def bigo_pos_const func_plus set_plus_def) - apply (subst bigo_pos_const [symmetric])+ - apply (rule_tac x = - "%n. if abs (g n) <= (abs (f n)) then x n else 0" in exI) - apply (rule conjI) - apply (rule_tac x = "c + c" in exI) - apply (clarsimp) - apply (auto) - apply (subgoal_tac "c * abs (f xa + g xa) <= (c + c) * abs (f xa)") - apply (erule_tac x = xa in allE) - apply (erule order_trans) - apply (simp) - apply (subgoal_tac "c * abs (f xa + g xa) <= c * (abs (f xa) + abs (g xa))") - apply (erule order_trans) - apply (simp add: ring_distribs) - apply (rule mult_left_mono) - apply assumption - apply (simp add: order_less_le) - apply (rule mult_left_mono) - apply (simp add: abs_triangle_ineq) - apply (simp add: order_less_le) - apply (rule mult_nonneg_nonneg) - apply (rule add_nonneg_nonneg) - apply auto - apply (rule_tac x = "%n. if (abs (f n)) < abs (g n) then x n else 0" - in exI) - apply (rule conjI) - apply (rule_tac x = "c + c" in exI) - apply auto - apply (subgoal_tac "c * abs (f xa + g xa) <= (c + c) * abs (g xa)") - apply (erule_tac x = xa in allE) - apply (erule order_trans) - apply (simp) - apply (subgoal_tac "c * abs (f xa + g xa) <= c * (abs (f xa) + abs (g xa))") - apply (erule order_trans) - apply (simp add: ring_distribs) - apply (rule mult_left_mono) - apply (simp add: order_less_le) - apply (simp add: order_less_le) - apply (rule mult_left_mono) - apply (rule abs_triangle_ineq) - apply (simp add: order_less_le) -apply (metis abs_not_less_zero double_less_0_iff less_not_permute linorder_not_less mult_less_0_iff) - apply (rule ext) - apply (auto simp add: if_splits linorder_not_le) -done - -lemma bigo_plus_subset2 [intro]: "A <= O(f) ==> B <= O(f) ==> A \ B <= O(f)" - apply (subgoal_tac "A \ B <= O(f) \ O(f)") - apply (erule order_trans) - apply simp - apply (auto del: subsetI simp del: bigo_plus_idemp) -done - -declare [[ sledgehammer_problem_prefix = "BigO__bigo_plus_eq" ]] -lemma bigo_plus_eq: "ALL x. 0 <= f x ==> ALL x. 0 <= g x ==> - O(f + g) = O(f) \ O(g)" - apply (rule equalityI) - apply (rule bigo_plus_subset) - apply (simp add: bigo_alt_def set_plus_def func_plus) - apply clarify -(*sledgehammer*) - apply (rule_tac x = "max c ca" in exI) - apply (rule conjI) - apply (metis Orderings.less_max_iff_disj) - apply clarify - apply (drule_tac x = "xa" in spec)+ - apply (subgoal_tac "0 <= f xa + g xa") - apply (simp add: ring_distribs) - apply (subgoal_tac "abs(a xa + b xa) <= abs(a xa) + abs(b xa)") - apply (subgoal_tac "abs(a xa) + abs(b xa) <= - max c ca * f xa + max c ca * g xa") - apply (blast intro: order_trans) - defer 1 - apply (rule abs_triangle_ineq) - apply (metis add_nonneg_nonneg) - apply (rule add_mono) -using [[ sledgehammer_problem_prefix = "BigO__bigo_plus_eq_simpler" ]] - apply (metis le_maxI2 linorder_linear min_max.sup_absorb1 mult_right_mono xt1(6)) - apply (metis le_maxI2 linorder_not_le mult_le_cancel_right order_trans) -done - -declare [[ sledgehammer_problem_prefix = "BigO__bigo_bounded_alt" ]] -lemma bigo_bounded_alt: "ALL x. 0 <= f x ==> ALL x. f x <= c * g x ==> - f : O(g)" - apply (auto simp add: bigo_def) -(* Version 1: one-line proof *) - apply (metis abs_le_D1 linorder_class.not_less order_less_le Orderings.xt1(12) abs_mult) - done - -lemma (*bigo_bounded_alt:*) "ALL x. 0 <= f x ==> ALL x. f x <= c * g x ==> - f : O(g)" -apply (auto simp add: bigo_def) -(* Version 2: structured proof *) -proof - - assume "\x. f x \ c * g x" - thus "\c. \x. f x \ c * \g x\" by (metis abs_mult abs_ge_self order_trans) -qed - -text{*So here is the easier (and more natural) problem using transitivity*} -declare [[ sledgehammer_problem_prefix = "BigO__bigo_bounded_alt_trans" ]] -lemma "ALL x. 0 <= f x ==> ALL x. f x <= c * g x ==> f : O(g)" -apply (auto simp add: bigo_def) -(* Version 1: one-line proof *) -by (metis abs_ge_self abs_mult order_trans) - -text{*So here is the easier (and more natural) problem using transitivity*} -declare [[ sledgehammer_problem_prefix = "BigO__bigo_bounded_alt_trans" ]] -lemma "ALL x. 0 <= f x ==> ALL x. f x <= c * g x ==> f : O(g)" - apply (auto simp add: bigo_def) -(* Version 2: structured proof *) -proof - - assume "\x. f x \ c * g x" - thus "\c. \x. f x \ c * \g x\" by (metis abs_mult abs_ge_self order_trans) -qed - -lemma bigo_bounded: "ALL x. 0 <= f x ==> ALL x. f x <= g x ==> - f : O(g)" - apply (erule bigo_bounded_alt [of f 1 g]) - apply simp -done - -declare [[ sledgehammer_problem_prefix = "BigO__bigo_bounded2" ]] -lemma bigo_bounded2: "ALL x. lb x <= f x ==> ALL x. f x <= lb x + g x ==> - f : lb +o O(g)" -apply (rule set_minus_imp_plus) -apply (rule bigo_bounded) - apply (auto simp add: diff_minus fun_Compl_def func_plus) - prefer 2 - apply (drule_tac x = x in spec)+ - apply (metis add_right_mono add_commute diff_add_cancel diff_minus_eq_add le_less order_trans) -proof - - fix x :: 'a - assume "\x. lb x \ f x" - thus "(0\'b) \ f x + - lb x" by (metis not_leE diff_minus less_iff_diff_less_0 less_le_not_le) -qed - -declare [[ sledgehammer_problem_prefix = "BigO__bigo_abs" ]] -lemma bigo_abs: "(%x. abs(f x)) =o O(f)" -apply (unfold bigo_def) -apply auto -by (metis mult_1 order_refl) - -declare [[ sledgehammer_problem_prefix = "BigO__bigo_abs2" ]] -lemma bigo_abs2: "f =o O(%x. abs(f x))" -apply (unfold bigo_def) -apply auto -by (metis mult_1 order_refl) - -lemma bigo_abs3: "O(f) = O(%x. abs(f x))" -proof - - have F1: "\v u. u \ O(v) \ O(u) \ O(v)" by (metis bigo_elt_subset) - have F2: "\u. (\R. \u R\) \ O(u)" by (metis bigo_abs) - have "\u. u \ O(\R. \u R\)" by (metis bigo_abs2) - thus "O(f) = O(\x. \f x\)" using F1 F2 by auto -qed - -lemma bigo_abs4: "f =o g +o O(h) ==> - (%x. abs (f x)) =o (%x. abs (g x)) +o O(h)" - apply (drule set_plus_imp_minus) - apply (rule set_minus_imp_plus) - apply (subst fun_diff_def) -proof - - assume a: "f - g : O(h)" - have "(%x. abs (f x) - abs (g x)) =o O(%x. abs(abs (f x) - abs (g x)))" - by (rule bigo_abs2) - also have "... <= O(%x. abs (f x - g x))" - apply (rule bigo_elt_subset) - apply (rule bigo_bounded) - apply force - apply (rule allI) - apply (rule abs_triangle_ineq3) - done - also have "... <= O(f - g)" - apply (rule bigo_elt_subset) - apply (subst fun_diff_def) - apply (rule bigo_abs) - done - also have "... <= O(h)" - using a by (rule bigo_elt_subset) - finally show "(%x. abs (f x) - abs (g x)) : O(h)". -qed - -lemma bigo_abs5: "f =o O(g) ==> (%x. abs(f x)) =o O(g)" -by (unfold bigo_def, auto) - -lemma bigo_elt_subset2 [intro]: "f : g +o O(h) ==> O(f) <= O(g) \ O(h)" -proof - - assume "f : g +o O(h)" - also have "... <= O(g) \ O(h)" - by (auto del: subsetI) - also have "... = O(%x. abs(g x)) \ O(%x. abs(h x))" - apply (subst bigo_abs3 [symmetric])+ - apply (rule refl) - done - also have "... = O((%x. abs(g x)) + (%x. abs(h x)))" - by (rule bigo_plus_eq [symmetric], auto) - finally have "f : ...". - then have "O(f) <= ..." - by (elim bigo_elt_subset) - also have "... = O(%x. abs(g x)) \ O(%x. abs(h x))" - by (rule bigo_plus_eq, auto) - finally show ?thesis - by (simp add: bigo_abs3 [symmetric]) -qed - -declare [[ sledgehammer_problem_prefix = "BigO__bigo_mult" ]] -lemma bigo_mult [intro]: "O(f)\O(g) <= O(f * g)" - apply (rule subsetI) - apply (subst bigo_def) - apply (auto simp del: abs_mult mult_ac - simp add: bigo_alt_def set_times_def func_times) -(*sledgehammer*) - apply (rule_tac x = "c * ca" in exI) - apply(rule allI) - apply(erule_tac x = x in allE)+ - apply(subgoal_tac "c * ca * abs(f x * g x) = - (c * abs(f x)) * (ca * abs(g x))") -using [[ sledgehammer_problem_prefix = "BigO__bigo_mult_simpler" ]] -prefer 2 -apply (metis mult_assoc mult_left_commute - abs_of_pos mult_left_commute - abs_mult mult_pos_pos) - apply (erule ssubst) - apply (subst abs_mult) -(* not quite as hard as BigO__bigo_mult_simpler_1 (a hard problem!) since - abs_mult has just been done *) -by (metis abs_ge_zero mult_mono') - -declare [[ sledgehammer_problem_prefix = "BigO__bigo_mult2" ]] -lemma bigo_mult2 [intro]: "f *o O(g) <= O(f * g)" - apply (auto simp add: bigo_def elt_set_times_def func_times abs_mult) -(*sledgehammer*) - apply (rule_tac x = c in exI) - apply clarify - apply (drule_tac x = x in spec) -using [[ sledgehammer_problem_prefix = "BigO__bigo_mult2_simpler" ]] -(*sledgehammer [no luck]*) - apply (subgoal_tac "abs(f x) * abs(b x) <= abs(f x) * (c * abs(g x))") - apply (simp add: mult_ac) - apply (rule mult_left_mono, assumption) - apply (rule abs_ge_zero) -done - -declare [[ sledgehammer_problem_prefix = "BigO__bigo_mult3" ]] -lemma bigo_mult3: "f : O(h) ==> g : O(j) ==> f * g : O(h * j)" -by (metis bigo_mult set_rev_mp set_times_intro) - -declare [[ sledgehammer_problem_prefix = "BigO__bigo_mult4" ]] -lemma bigo_mult4 [intro]:"f : k +o O(h) ==> g * f : (g * k) +o O(g * h)" -by (metis bigo_mult2 set_plus_mono_b set_times_intro2 set_times_plus_distrib) - - -lemma bigo_mult5: "ALL x. f x ~= 0 ==> - O(f * g) <= (f::'a => ('b::linordered_field)) *o O(g)" -proof - - assume a: "ALL x. f x ~= 0" - show "O(f * g) <= f *o O(g)" - proof - fix h - assume h: "h : O(f * g)" - then have "(%x. 1 / (f x)) * h : (%x. 1 / f x) *o O(f * g)" - by auto - also have "... <= O((%x. 1 / f x) * (f * g))" - by (rule bigo_mult2) - also have "(%x. 1 / f x) * (f * g) = g" - apply (simp add: func_times) - apply (rule ext) - apply (simp add: a h nonzero_divide_eq_eq mult_ac) - done - finally have "(%x. (1::'b) / f x) * h : O(g)". - then have "f * ((%x. (1::'b) / f x) * h) : f *o O(g)" - by auto - also have "f * ((%x. (1::'b) / f x) * h) = h" - apply (simp add: func_times) - apply (rule ext) - apply (simp add: a h nonzero_divide_eq_eq mult_ac) - done - finally show "h : f *o O(g)". - qed -qed - -declare [[ sledgehammer_problem_prefix = "BigO__bigo_mult6" ]] -lemma bigo_mult6: "ALL x. f x ~= 0 ==> - O(f * g) = (f::'a => ('b::linordered_field)) *o O(g)" -by (metis bigo_mult2 bigo_mult5 order_antisym) - -(*proof requires relaxing relevance: 2007-01-25*) -declare [[ sledgehammer_problem_prefix = "BigO__bigo_mult7" ]] - declare bigo_mult6 [simp] -lemma bigo_mult7: "ALL x. f x ~= 0 ==> - O(f * g) <= O(f::'a => ('b::linordered_field)) \ O(g)" -(*sledgehammer*) - apply (subst bigo_mult6) - apply assumption - apply (rule set_times_mono3) - apply (rule bigo_refl) -done - declare bigo_mult6 [simp del] - -declare [[ sledgehammer_problem_prefix = "BigO__bigo_mult8" ]] - declare bigo_mult7[intro!] -lemma bigo_mult8: "ALL x. f x ~= 0 ==> - O(f * g) = O(f::'a => ('b::linordered_field)) \ O(g)" -by (metis bigo_mult bigo_mult7 order_antisym_conv) - -lemma bigo_minus [intro]: "f : O(g) ==> - f : O(g)" - by (auto simp add: bigo_def fun_Compl_def) - -lemma bigo_minus2: "f : g +o O(h) ==> -f : -g +o O(h)" - apply (rule set_minus_imp_plus) - apply (drule set_plus_imp_minus) - apply (drule bigo_minus) - apply (simp add: diff_minus) -done - -lemma bigo_minus3: "O(-f) = O(f)" - by (auto simp add: bigo_def fun_Compl_def abs_minus_cancel) - -lemma bigo_plus_absorb_lemma1: "f : O(g) ==> f +o O(g) <= O(g)" -proof - - assume a: "f : O(g)" - show "f +o O(g) <= O(g)" - proof - - have "f : O(f)" by auto - then have "f +o O(g) <= O(f) \ O(g)" - by (auto del: subsetI) - also have "... <= O(g) \ O(g)" - proof - - from a have "O(f) <= O(g)" by (auto del: subsetI) - thus ?thesis by (auto del: subsetI) - qed - also have "... <= O(g)" by (simp add: bigo_plus_idemp) - finally show ?thesis . - qed -qed - -lemma bigo_plus_absorb_lemma2: "f : O(g) ==> O(g) <= f +o O(g)" -proof - - assume a: "f : O(g)" - show "O(g) <= f +o O(g)" - proof - - from a have "-f : O(g)" by auto - then have "-f +o O(g) <= O(g)" by (elim bigo_plus_absorb_lemma1) - then have "f +o (-f +o O(g)) <= f +o O(g)" by auto - also have "f +o (-f +o O(g)) = O(g)" - by (simp add: set_plus_rearranges) - finally show ?thesis . - qed -qed - -declare [[ sledgehammer_problem_prefix = "BigO__bigo_plus_absorb" ]] -lemma bigo_plus_absorb [simp]: "f : O(g) ==> f +o O(g) = O(g)" -by (metis bigo_plus_absorb_lemma1 bigo_plus_absorb_lemma2 order_eq_iff) - -lemma bigo_plus_absorb2 [intro]: "f : O(g) ==> A <= O(g) ==> f +o A <= O(g)" - apply (subgoal_tac "f +o A <= f +o O(g)") - apply force+ -done - -lemma bigo_add_commute_imp: "f : g +o O(h) ==> g : f +o O(h)" - apply (subst set_minus_plus [symmetric]) - apply (subgoal_tac "g - f = - (f - g)") - apply (erule ssubst) - apply (rule bigo_minus) - apply (subst set_minus_plus) - apply assumption - apply (simp add: diff_minus add_ac) -done - -lemma bigo_add_commute: "(f : g +o O(h)) = (g : f +o O(h))" - apply (rule iffI) - apply (erule bigo_add_commute_imp)+ -done - -lemma bigo_const1: "(%x. c) : O(%x. 1)" -by (auto simp add: bigo_def mult_ac) - -declare [[ sledgehammer_problem_prefix = "BigO__bigo_const2" ]] -lemma (*bigo_const2 [intro]:*) "O(%x. c) <= O(%x. 1)" -by (metis bigo_const1 bigo_elt_subset) - -lemma bigo_const2 [intro]: "O(%x. c::'b::linordered_idom) <= O(%x. 1)" -(* "thus" had to be replaced by "show" with an explicit reference to "F1" *) -proof - - have F1: "\u. (\Q. u) \ O(\Q. 1)" by (metis bigo_const1) - show "O(\x. c) \ O(\x. 1)" by (metis F1 bigo_elt_subset) -qed - -declare [[ sledgehammer_problem_prefix = "BigO__bigo_const3" ]] -lemma bigo_const3: "(c::'a::linordered_field) ~= 0 ==> (%x. 1) : O(%x. c)" -apply (simp add: bigo_def) -by (metis abs_eq_0 left_inverse order_refl) - -lemma bigo_const4: "(c::'a::linordered_field) ~= 0 ==> O(%x. 1) <= O(%x. c)" -by (rule bigo_elt_subset, rule bigo_const3, assumption) - -lemma bigo_const [simp]: "(c::'a::linordered_field) ~= 0 ==> - O(%x. c) = O(%x. 1)" -by (rule equalityI, rule bigo_const2, rule bigo_const4, assumption) - -declare [[ sledgehammer_problem_prefix = "BigO__bigo_const_mult1" ]] -lemma bigo_const_mult1: "(%x. c * f x) : O(f)" - apply (simp add: bigo_def abs_mult) -by (metis le_less) - -lemma bigo_const_mult2: "O(%x. c * f x) <= O(f)" -by (rule bigo_elt_subset, rule bigo_const_mult1) - -declare [[ sledgehammer_problem_prefix = "BigO__bigo_const_mult3" ]] -lemma bigo_const_mult3: "(c::'a::linordered_field) ~= 0 ==> f : O(%x. c * f x)" - apply (simp add: bigo_def) -(*sledgehammer [no luck]*) - apply (rule_tac x = "abs(inverse c)" in exI) - apply (simp only: abs_mult [symmetric] mult_assoc [symmetric]) -apply (subst left_inverse) -apply (auto ) -done - -lemma bigo_const_mult4: "(c::'a::linordered_field) ~= 0 ==> - O(f) <= O(%x. c * f x)" -by (rule bigo_elt_subset, rule bigo_const_mult3, assumption) - -lemma bigo_const_mult [simp]: "(c::'a::linordered_field) ~= 0 ==> - O(%x. c * f x) = O(f)" -by (rule equalityI, rule bigo_const_mult2, erule bigo_const_mult4) - -declare [[ sledgehammer_problem_prefix = "BigO__bigo_const_mult5" ]] -lemma bigo_const_mult5 [simp]: "(c::'a::linordered_field) ~= 0 ==> - (%x. c) *o O(f) = O(f)" - apply (auto del: subsetI) - apply (rule order_trans) - apply (rule bigo_mult2) - apply (simp add: func_times) - apply (auto intro!: subsetI simp add: bigo_def elt_set_times_def func_times) - apply (rule_tac x = "%y. inverse c * x y" in exI) - apply (rename_tac g d) - apply safe - apply (rule_tac [2] ext) - prefer 2 - apply simp - apply (simp add: mult_assoc [symmetric] abs_mult) - (* couldn't get this proof without the step above *) -proof - - fix g :: "'b \ 'a" and d :: 'a - assume A1: "c \ (0\'a)" - assume A2: "\x\'b. \g x\ \ d * \f x\" - have F1: "inverse \c\ = \inverse c\" using A1 by (metis nonzero_abs_inverse) - have F2: "(0\'a) < \c\" using A1 by (metis zero_less_abs_iff) - have "(0\'a) < \c\ \ (0\'a) < \inverse c\" using F1 by (metis positive_imp_inverse_positive) - hence "(0\'a) < \inverse c\" using F2 by metis - hence F3: "(0\'a) \ \inverse c\" by (metis order_le_less) - have "\(u\'a) SKF\<^isub>7\'a \ 'b. \g (SKF\<^isub>7 (\inverse c\ * u))\ \ u * \f (SKF\<^isub>7 (\inverse c\ * u))\" - using A2 by metis - hence F4: "\(u\'a) SKF\<^isub>7\'a \ 'b. \g (SKF\<^isub>7 (\inverse c\ * u))\ \ u * \f (SKF\<^isub>7 (\inverse c\ * u))\ \ (0\'a) \ \inverse c\" - using F3 by metis - hence "\(v\'a) (u\'a) SKF\<^isub>7\'a \ 'b. \inverse c\ * \g (SKF\<^isub>7 (u * v))\ \ u * (v * \f (SKF\<^isub>7 (u * v))\)" - by (metis comm_mult_left_mono) - thus "\ca\'a. \x\'b. \inverse c\ * \g x\ \ ca * \f x\" - using A2 F4 by (metis ab_semigroup_mult_class.mult_ac(1) comm_mult_left_mono) -qed - - -declare [[ sledgehammer_problem_prefix = "BigO__bigo_const_mult6" ]] -lemma bigo_const_mult6 [intro]: "(%x. c) *o O(f) <= O(f)" - apply (auto intro!: subsetI - simp add: bigo_def elt_set_times_def func_times - simp del: abs_mult mult_ac) -(*sledgehammer*) - apply (rule_tac x = "ca * (abs c)" in exI) - apply (rule allI) - apply (subgoal_tac "ca * abs(c) * abs(f x) = abs(c) * (ca * abs(f x))") - apply (erule ssubst) - apply (subst abs_mult) - apply (rule mult_left_mono) - apply (erule spec) - apply simp - apply(simp add: mult_ac) -done - -lemma bigo_const_mult7 [intro]: "f =o O(g) ==> (%x. c * f x) =o O(g)" -proof - - assume "f =o O(g)" - then have "(%x. c) * f =o (%x. c) *o O(g)" - by auto - also have "(%x. c) * f = (%x. c * f x)" - by (simp add: func_times) - also have "(%x. c) *o O(g) <= O(g)" - by (auto del: subsetI) - finally show ?thesis . -qed - -lemma bigo_compose1: "f =o O(g) ==> (%x. f(k x)) =o O(%x. g(k x))" -by (unfold bigo_def, auto) - -lemma bigo_compose2: "f =o g +o O(h) ==> (%x. f(k x)) =o (%x. g(k x)) +o - O(%x. h(k x))" - apply (simp only: set_minus_plus [symmetric] diff_minus fun_Compl_def - func_plus) - apply (erule bigo_compose1) -done - -subsection {* Setsum *} - -lemma bigo_setsum_main: "ALL x. ALL y : A x. 0 <= h x y ==> - EX c. ALL x. ALL y : A x. abs(f x y) <= c * (h x y) ==> - (%x. SUM y : A x. f x y) =o O(%x. SUM y : A x. h x y)" - apply (auto simp add: bigo_def) - apply (rule_tac x = "abs c" in exI) - apply (subst abs_of_nonneg) back back - apply (rule setsum_nonneg) - apply force - apply (subst setsum_right_distrib) - apply (rule allI) - apply (rule order_trans) - apply (rule setsum_abs) - apply (rule setsum_mono) -apply (blast intro: order_trans mult_right_mono abs_ge_self) -done - -declare [[ sledgehammer_problem_prefix = "BigO__bigo_setsum1" ]] -lemma bigo_setsum1: "ALL x y. 0 <= h x y ==> - EX c. ALL x y. abs(f x y) <= c * (h x y) ==> - (%x. SUM y : A x. f x y) =o O(%x. SUM y : A x. h x y)" - apply (rule bigo_setsum_main) -(*sledgehammer*) - apply force - apply clarsimp - apply (rule_tac x = c in exI) - apply force -done - -lemma bigo_setsum2: "ALL y. 0 <= h y ==> - EX c. ALL y. abs(f y) <= c * (h y) ==> - (%x. SUM y : A x. f y) =o O(%x. SUM y : A x. h y)" -by (rule bigo_setsum1, auto) - -declare [[ sledgehammer_problem_prefix = "BigO__bigo_setsum3" ]] -lemma bigo_setsum3: "f =o O(h) ==> - (%x. SUM y : A x. (l x y) * f(k x y)) =o - O(%x. SUM y : A x. abs(l x y * h(k x y)))" - apply (rule bigo_setsum1) - apply (rule allI)+ - apply (rule abs_ge_zero) - apply (unfold bigo_def) - apply (auto simp add: abs_mult) -(*sledgehammer*) - apply (rule_tac x = c in exI) - apply (rule allI)+ - apply (subst mult_left_commute) - apply (rule mult_left_mono) - apply (erule spec) - apply (rule abs_ge_zero) -done - -lemma bigo_setsum4: "f =o g +o O(h) ==> - (%x. SUM y : A x. l x y * f(k x y)) =o - (%x. SUM y : A x. l x y * g(k x y)) +o - O(%x. SUM y : A x. abs(l x y * h(k x y)))" - apply (rule set_minus_imp_plus) - apply (subst fun_diff_def) - apply (subst setsum_subtractf [symmetric]) - apply (subst right_diff_distrib [symmetric]) - apply (rule bigo_setsum3) - apply (subst fun_diff_def [symmetric]) - apply (erule set_plus_imp_minus) -done - -declare [[ sledgehammer_problem_prefix = "BigO__bigo_setsum5" ]] -lemma bigo_setsum5: "f =o O(h) ==> ALL x y. 0 <= l x y ==> - ALL x. 0 <= h x ==> - (%x. SUM y : A x. (l x y) * f(k x y)) =o - O(%x. SUM y : A x. (l x y) * h(k x y))" - apply (subgoal_tac "(%x. SUM y : A x. (l x y) * h(k x y)) = - (%x. SUM y : A x. abs((l x y) * h(k x y)))") - apply (erule ssubst) - apply (erule bigo_setsum3) - apply (rule ext) - apply (rule setsum_cong2) - apply (thin_tac "f \ O(h)") -apply (metis abs_of_nonneg zero_le_mult_iff) -done - -lemma bigo_setsum6: "f =o g +o O(h) ==> ALL x y. 0 <= l x y ==> - ALL x. 0 <= h x ==> - (%x. SUM y : A x. (l x y) * f(k x y)) =o - (%x. SUM y : A x. (l x y) * g(k x y)) +o - O(%x. SUM y : A x. (l x y) * h(k x y))" - apply (rule set_minus_imp_plus) - apply (subst fun_diff_def) - apply (subst setsum_subtractf [symmetric]) - apply (subst right_diff_distrib [symmetric]) - apply (rule bigo_setsum5) - apply (subst fun_diff_def [symmetric]) - apply (drule set_plus_imp_minus) - apply auto -done - -subsection {* Misc useful stuff *} - -lemma bigo_useful_intro: "A <= O(f) ==> B <= O(f) ==> - A \ B <= O(f)" - apply (subst bigo_plus_idemp [symmetric]) - apply (rule set_plus_mono2) - apply assumption+ -done - -lemma bigo_useful_add: "f =o O(h) ==> g =o O(h) ==> f + g =o O(h)" - apply (subst bigo_plus_idemp [symmetric]) - apply (rule set_plus_intro) - apply assumption+ -done - -lemma bigo_useful_const_mult: "(c::'a::linordered_field) ~= 0 ==> - (%x. c) * f =o O(h) ==> f =o O(h)" - apply (rule subsetD) - apply (subgoal_tac "(%x. 1 / c) *o O(h) <= O(h)") - apply assumption - apply (rule bigo_const_mult6) - apply (subgoal_tac "f = (%x. 1 / c) * ((%x. c) * f)") - apply (erule ssubst) - apply (erule set_times_intro2) - apply (simp add: func_times) -done - -declare [[ sledgehammer_problem_prefix = "BigO__bigo_fix" ]] -lemma bigo_fix: "(%x. f ((x::nat) + 1)) =o O(%x. h(x + 1)) ==> f 0 = 0 ==> - f =o O(h)" - apply (simp add: bigo_alt_def) -(*sledgehammer*) - apply clarify - apply (rule_tac x = c in exI) - apply safe - apply (case_tac "x = 0") -apply (metis abs_ge_zero abs_zero order_less_le split_mult_pos_le) - apply (subgoal_tac "x = Suc (x - 1)") - apply metis - apply simp - done - - -lemma bigo_fix2: - "(%x. f ((x::nat) + 1)) =o (%x. g(x + 1)) +o O(%x. h(x + 1)) ==> - f 0 = g 0 ==> f =o g +o O(h)" - apply (rule set_minus_imp_plus) - apply (rule bigo_fix) - apply (subst fun_diff_def) - apply (subst fun_diff_def [symmetric]) - apply (rule set_plus_imp_minus) - apply simp - apply (simp add: fun_diff_def) -done - -subsection {* Less than or equal to *} - -definition lesso :: "('a => 'b::linordered_idom) => ('a => 'b) => ('a => 'b)" (infixl " ALL x. abs (g x) <= abs (f x) ==> - g =o O(h)" - apply (unfold bigo_def) - apply clarsimp -apply (blast intro: order_trans) -done - -lemma bigo_lesseq2: "f =o O(h) ==> ALL x. abs (g x) <= f x ==> - g =o O(h)" - apply (erule bigo_lesseq1) -apply (blast intro: abs_ge_self order_trans) -done - -lemma bigo_lesseq3: "f =o O(h) ==> ALL x. 0 <= g x ==> ALL x. g x <= f x ==> - g =o O(h)" - apply (erule bigo_lesseq2) - apply (rule allI) - apply (subst abs_of_nonneg) - apply (erule spec)+ -done - -lemma bigo_lesseq4: "f =o O(h) ==> - ALL x. 0 <= g x ==> ALL x. g x <= abs (f x) ==> - g =o O(h)" - apply (erule bigo_lesseq1) - apply (rule allI) - apply (subst abs_of_nonneg) - apply (erule spec)+ -done - -declare [[ sledgehammer_problem_prefix = "BigO__bigo_lesso1" ]] -lemma bigo_lesso1: "ALL x. f x <= g x ==> f x. max (f x - g x) 0) = 0" - thus "(\x. max (f x - g x) 0) \ O(h)" by (metis bigo_zero) -next - show "\x\'a. f x \ g x \ (\x\'a. max (f x - g x) (0\'b)) = (0\'a \ 'b)" - apply (unfold func_zero) - apply (rule ext) - by (simp split: split_max) -qed - -declare [[ sledgehammer_problem_prefix = "BigO__bigo_lesso2" ]] -lemma bigo_lesso2: "f =o g +o O(h) ==> - ALL x. 0 <= k x ==> ALL x. k x <= f x ==> - k x\'a. k x \ f x" - hence F1: "\x\<^isub>1\'a. max (k x\<^isub>1) (f x\<^isub>1) = f x\<^isub>1" by (metis min_max.sup_absorb2) - assume "(0\'b) \ k x - g x" - hence F2: "max (0\'b) (k x - g x) = k x - g x" by (metis min_max.sup_absorb2) - have F3: "\x\<^isub>1\'b. x\<^isub>1 \ \x\<^isub>1\" by (metis abs_le_iff le_less) - have "\(x\<^isub>2\'b) x\<^isub>1\'b. max x\<^isub>1 x\<^isub>2 \ x\<^isub>2 \ max x\<^isub>1 x\<^isub>2 \ x\<^isub>1" by (metis le_less le_max_iff_disj) - hence "\(x\<^isub>3\'b) (x\<^isub>2\'b) x\<^isub>1\'b. x\<^isub>1 - x\<^isub>2 \ x\<^isub>3 - x\<^isub>2 \ x\<^isub>3 \ x\<^isub>1" by (metis add_le_imp_le_right diff_minus min_max.le_supE) - hence "k x - g x \ f x - g x" by (metis F1 le_less min_max.sup_absorb2 min_max.sup_commute) - hence "k x - g x \ \f x - g x\" by (metis F3 le_max_iff_disj min_max.sup_absorb2) - thus "max (k x - g x) (0\'b) \ \f x - g x\" by (metis F2 min_max.sup_commute) -next - show "\x\'a. - \\x\'a. (0\'b) \ k x; \x\'a. k x \ f x; \ (0\'b) \ k x - g x\ - \ max (k x - g x) (0\'b) \ \f x - g x\" - by (metis abs_ge_zero le_cases min_max.sup_absorb2) -qed - -declare [[ sledgehammer_problem_prefix = "BigO__bigo_lesso3" ]] -lemma bigo_lesso3: "f =o g +o O(h) ==> - ALL x. 0 <= k x ==> ALL x. g x <= k x ==> - f 'b::linordered_field) ==> - g =o h +o O(k) ==> f - EX C. ALL x. f x <= g x + C * abs(h x)" - apply (simp only: lesso_def bigo_alt_def) - apply clarsimp - apply (metis abs_if abs_mult add_commute diff_le_eq less_not_permute) -done - -end