diff -r d666cb0e4cf9 -r c726ecfb22b6 src/HOL/Set_Interval.thy --- a/src/HOL/Set_Interval.thy Tue Mar 18 14:32:23 2014 +0100 +++ b/src/HOL/Set_Interval.thy Tue Mar 18 15:53:48 2014 +0100 @@ -1472,10 +1472,10 @@ lemma geometric_sum: assumes "x \ 1" - shows "(\i=0..i 0" by simp_all - moreover have "(\i=0..ii\{1..n}. of_nat i) = - of_nat n*((of_nat n)+1)" + "(2::'a::comm_semiring_1)*(\i\{1..n}. of_nat i) = of_nat n*((of_nat n)+1)" proof (induct n) case 0 show ?case by simp @@ -1575,8 +1574,8 @@ lemma nat_diff_setsum_reindex: fixes x :: "'a::{comm_ring,monoid_mult}" - shows "(\i=0..i=0..ii