diff -r b0064703967b -r c78c7da09519 src/HOL/Hyperreal/HyperNat.thy --- a/src/HOL/Hyperreal/HyperNat.thy Thu Jan 29 16:51:17 2004 +0100 +++ b/src/HOL/Hyperreal/HyperNat.thy Mon Feb 02 12:23:46 2004 +0100 @@ -1,83 +1,1070 @@ (* Title : HyperNat.thy Author : Jacques D. Fleuriot Copyright : 1998 University of Cambridge - Description : Explicit construction of hypernaturals using - ultrafilters -*) +*) -HyperNat = Star + +header{*Construction of Hypernaturals using Ultrafilters*} + +theory HyperNat = Star: constdefs hypnatrel :: "((nat=>nat)*(nat=>nat)) set" - "hypnatrel == {p. EX X Y. p = ((X::nat=>nat),Y) & - {n::nat. X(n) = Y(n)} : FreeUltrafilterNat}" + "hypnatrel == {p. \X Y. p = ((X::nat=>nat),Y) & + {n::nat. X(n) = Y(n)} \ FreeUltrafilterNat}" -typedef hypnat = "UNIV//hypnatrel" (quotient_def) +typedef hypnat = "UNIV//hypnatrel" + by (auto simp add: quotient_def) -instance - hypnat :: {ord, zero, one, plus, times, minus} +instance hypnat :: ord .. +instance hypnat :: zero .. +instance hypnat :: one .. +instance hypnat :: plus .. +instance hypnat :: times .. +instance hypnat :: minus .. -consts - whn :: hypnat +consts whn :: hypnat constdefs (* embedding the naturals in the hypernaturals *) - hypnat_of_nat :: nat => hypnat + hypnat_of_nat :: "nat => hypnat" "hypnat_of_nat m == Abs_hypnat(hypnatrel``{%n::nat. m})" (* hypernaturals as members of the hyperreals; the set is defined as *) (* the nonstandard extension of set of naturals embedded in the reals *) HNat :: "hypreal set" - "HNat == *s* {n. EX no::nat. n = real no}" + "HNat == *s* {n. \no::nat. n = real no}" (* the set of infinite hypernatural numbers *) HNatInfinite :: "hypnat set" - "HNatInfinite == {n. n ~: Nats}" + "HNatInfinite == {n. n \ Nats}" - (* explicit embedding of the hypernaturals in the hyperreals *) - hypreal_of_hypnat :: hypnat => hypreal - "hypreal_of_hypnat N == Abs_hypreal(UN X: Rep_hypnat(N). + (* explicit embedding of the hypernaturals in the hyperreals *) + hypreal_of_hypnat :: "hypnat => hypreal" + "hypreal_of_hypnat N == Abs_hypreal(\X \ Rep_hypnat(N). hyprel``{%n::nat. real (X n)})" - -defs + +defs (overloaded) (** the overloaded constant "Nats" **) - + (* set of naturals embedded in the hyperreals*) - SNat_def "Nats == {n. EX N. n = hypreal_of_nat N}" + SNat_def: "Nats == {n. \N. n = hypreal_of_nat N}" (* set of naturals embedded in the hypernaturals*) - SHNat_def "Nats == {n. EX N. n = hypnat_of_nat N}" + SHNat_def: "Nats == {n. \N. n = hypnat_of_nat N}" (** hypernatural arithmetic **) - - hypnat_zero_def "0 == Abs_hypnat(hypnatrel``{%n::nat. 0})" - hypnat_one_def "1 == Abs_hypnat(hypnatrel``{%n::nat. 1})" + + hypnat_zero_def: "0 == Abs_hypnat(hypnatrel``{%n::nat. 0})" + hypnat_one_def: "1 == Abs_hypnat(hypnatrel``{%n::nat. 1})" (* omega is in fact an infinite hypernatural number = [<1,2,3,...>] *) - hypnat_omega_def "whn == Abs_hypnat(hypnatrel``{%n::nat. n})" - - hypnat_add_def - "P + Q == Abs_hypnat(UN X:Rep_hypnat(P). UN Y:Rep_hypnat(Q). + hypnat_omega_def: "whn == Abs_hypnat(hypnatrel``{%n::nat. n})" + + hypnat_add_def: + "P + Q == Abs_hypnat(\X \ Rep_hypnat(P). \Y \ Rep_hypnat(Q). hypnatrel``{%n::nat. X n + Y n})" - hypnat_mult_def - "P * Q == Abs_hypnat(UN X:Rep_hypnat(P). UN Y:Rep_hypnat(Q). + hypnat_mult_def: + "P * Q == Abs_hypnat(\X \ Rep_hypnat(P). \Y \ Rep_hypnat(Q). hypnatrel``{%n::nat. X n * Y n})" - hypnat_minus_def - "P - Q == Abs_hypnat(UN X:Rep_hypnat(P). UN Y:Rep_hypnat(Q). + hypnat_minus_def: + "P - Q == Abs_hypnat(\X \ Rep_hypnat(P). \Y \ Rep_hypnat(Q). hypnatrel``{%n::nat. X n - Y n})" - hypnat_less_def - "P < (Q::hypnat) == EX X Y. X: Rep_hypnat(P) & - Y: Rep_hypnat(Q) & - {n::nat. X n < Y n} : FreeUltrafilterNat" - hypnat_le_def - "P <= (Q::hypnat) == ~(Q < P)" + hypnat_le_def: + "P \ (Q::hypnat) == \X Y. X \ Rep_hypnat(P) & + Y \ Rep_hypnat(Q) & + {n::nat. X n \ Y n} \ FreeUltrafilterNat" -end + hypnat_less_def: "(x < (y::hypnat)) == (x \ y & x \ y)" +subsection{*Properties of @{term hypnatrel}*} + +text{*Proving that @{term hypnatrel} is an equivalence relation*} + +lemma hypnatrel_iff: + "((X,Y) \ hypnatrel) = ({n. X n = Y n}: FreeUltrafilterNat)" +apply (unfold hypnatrel_def, fast) +done + +lemma hypnatrel_refl: "(x,x) \ hypnatrel" +by (unfold hypnatrel_def, auto) + +lemma hypnatrel_sym: "(x,y) \ hypnatrel ==> (y,x) \ hypnatrel" +by (auto simp add: hypnatrel_def eq_commute) + +lemma hypnatrel_trans [rule_format (no_asm)]: + "(x,y) \ hypnatrel --> (y,z) \ hypnatrel --> (x,z) \ hypnatrel" +apply (unfold hypnatrel_def, auto, ultra) +done + +lemma equiv_hypnatrel: + "equiv UNIV hypnatrel" +apply (simp add: equiv_def refl_def sym_def trans_def hypnatrel_refl) +apply (blast intro: hypnatrel_sym hypnatrel_trans) +done + +(* (hypnatrel `` {x} = hypnatrel `` {y}) = ((x,y) \ hypnatrel) *) +lemmas equiv_hypnatrel_iff = + eq_equiv_class_iff [OF equiv_hypnatrel UNIV_I UNIV_I, simp] + +lemma hypnatrel_in_hypnat [simp]: "hypnatrel``{x}:hypnat" +by (unfold hypnat_def hypnatrel_def quotient_def, blast) + +lemma inj_on_Abs_hypnat: "inj_on Abs_hypnat hypnat" +apply (rule inj_on_inverseI) +apply (erule Abs_hypnat_inverse) +done + +declare inj_on_Abs_hypnat [THEN inj_on_iff, simp] + Abs_hypnat_inverse [simp] + +declare equiv_hypnatrel [THEN eq_equiv_class_iff, simp] + +declare hypnatrel_iff [iff] + + +lemma inj_Rep_hypnat: "inj(Rep_hypnat)" +apply (rule inj_on_inverseI) +apply (rule Rep_hypnat_inverse) +done + +lemma lemma_hypnatrel_refl: "x \ hypnatrel `` {x}" +by (simp add: hypnatrel_def) + +declare lemma_hypnatrel_refl [simp] + +lemma hypnat_empty_not_mem: "{} \ hypnat" +apply (unfold hypnat_def) +apply (auto elim!: quotientE equalityCE) +done + +declare hypnat_empty_not_mem [simp] + +lemma Rep_hypnat_nonempty: "Rep_hypnat x \ {}" +by (cut_tac x = x in Rep_hypnat, auto) + +declare Rep_hypnat_nonempty [simp] + +subsection{*@{term hypnat_of_nat}: + the Injection from @{typ nat} to @{typ hypnat}*} + +lemma inj_hypnat_of_nat: "inj(hypnat_of_nat)" +apply (rule inj_onI) +apply (unfold hypnat_of_nat_def) +apply (drule inj_on_Abs_hypnat [THEN inj_onD]) +apply (rule hypnatrel_in_hypnat)+ +apply (drule eq_equiv_class) +apply (rule equiv_hypnatrel) +apply (simp_all split: split_if_asm) +done + +lemma eq_Abs_hypnat: + "(!!x. z = Abs_hypnat(hypnatrel``{x}) ==> P) ==> P" +apply (rule_tac x1=z in Rep_hypnat [unfolded hypnat_def, THEN quotientE]) +apply (drule_tac f = Abs_hypnat in arg_cong) +apply (force simp add: Rep_hypnat_inverse) +done + +subsection{*Hypernat Addition*} + +lemma hypnat_add_congruent2: + "congruent2 hypnatrel (%X Y. hypnatrel``{%n. X n + Y n})" +apply (unfold congruent2_def, auto, ultra) +done + +lemma hypnat_add: + "Abs_hypnat(hypnatrel``{%n. X n}) + Abs_hypnat(hypnatrel``{%n. Y n}) = + Abs_hypnat(hypnatrel``{%n. X n + Y n})" +by (simp add: hypnat_add_def UN_equiv_class2 [OF equiv_hypnatrel hypnat_add_congruent2]) + +lemma hypnat_add_commute: "(z::hypnat) + w = w + z" +apply (rule eq_Abs_hypnat [of z]) +apply (rule eq_Abs_hypnat [of w]) +apply (simp add: add_ac hypnat_add) +done + +lemma hypnat_add_assoc: "((z1::hypnat) + z2) + z3 = z1 + (z2 + z3)" +apply (rule eq_Abs_hypnat [of z1]) +apply (rule eq_Abs_hypnat [of z2]) +apply (rule eq_Abs_hypnat [of z3]) +apply (simp add: hypnat_add nat_add_assoc) +done + +lemma hypnat_add_zero_left: "(0::hypnat) + z = z" +apply (rule eq_Abs_hypnat [of z]) +apply (simp add: hypnat_zero_def hypnat_add) +done + +instance hypnat :: plus_ac0 + by (intro_classes, + (assumption | + rule hypnat_add_commute hypnat_add_assoc hypnat_add_zero_left)+) + + +subsection{*Subtraction inverse on @{typ hypreal}*} + + +lemma hypnat_minus_congruent2: + "congruent2 hypnatrel (%X Y. hypnatrel``{%n. X n - Y n})" +apply (unfold congruent2_def, auto, ultra) +done + +lemma hypnat_minus: + "Abs_hypnat(hypnatrel``{%n. X n}) - Abs_hypnat(hypnatrel``{%n. Y n}) = + Abs_hypnat(hypnatrel``{%n. X n - Y n})" +by (simp add: hypnat_minus_def UN_equiv_class2 [OF equiv_hypnatrel hypnat_minus_congruent2]) + +lemma hypnat_minus_zero: "z - z = (0::hypnat)" +apply (rule eq_Abs_hypnat [of z]) +apply (simp add: hypnat_zero_def hypnat_minus) +done + +lemma hypnat_diff_0_eq_0: "(0::hypnat) - n = 0" +apply (rule eq_Abs_hypnat [of n]) +apply (simp add: hypnat_minus hypnat_zero_def) +done + +declare hypnat_minus_zero [simp] hypnat_diff_0_eq_0 [simp] + +lemma hypnat_add_is_0: "(m+n = (0::hypnat)) = (m=0 & n=0)" +apply (rule eq_Abs_hypnat [of m]) +apply (rule eq_Abs_hypnat [of n]) +apply (auto intro: FreeUltrafilterNat_subset dest: FreeUltrafilterNat_Int simp add: hypnat_zero_def hypnat_add) +done + +declare hypnat_add_is_0 [iff] + +lemma hypnat_diff_diff_left: "(i::hypnat) - j - k = i - (j+k)" +apply (rule eq_Abs_hypnat [of i]) +apply (rule eq_Abs_hypnat [of j]) +apply (rule eq_Abs_hypnat [of k]) +apply (simp add: hypnat_minus hypnat_add diff_diff_left) +done + +lemma hypnat_diff_commute: "(i::hypnat) - j - k = i-k-j" +by (simp add: hypnat_diff_diff_left hypnat_add_commute) + +lemma hypnat_diff_add_inverse: "((n::hypnat) + m) - n = m" +apply (rule eq_Abs_hypnat [of m]) +apply (rule eq_Abs_hypnat [of n]) +apply (simp add: hypnat_minus hypnat_add) +done +declare hypnat_diff_add_inverse [simp] + +lemma hypnat_diff_add_inverse2: "((m::hypnat) + n) - n = m" +apply (rule eq_Abs_hypnat [of m]) +apply (rule eq_Abs_hypnat [of n]) +apply (simp add: hypnat_minus hypnat_add) +done +declare hypnat_diff_add_inverse2 [simp] + +lemma hypnat_diff_cancel: "((k::hypnat) + m) - (k+n) = m - n" +apply (rule eq_Abs_hypnat [of k]) +apply (rule eq_Abs_hypnat [of m]) +apply (rule eq_Abs_hypnat [of n]) +apply (simp add: hypnat_minus hypnat_add) +done +declare hypnat_diff_cancel [simp] + +lemma hypnat_diff_cancel2: "((m::hypnat) + k) - (n+k) = m - n" +by (simp add: hypnat_add_commute [of _ k]) +declare hypnat_diff_cancel2 [simp] + +lemma hypnat_diff_add_0: "(n::hypnat) - (n+m) = (0::hypnat)" +apply (rule eq_Abs_hypnat [of m]) +apply (rule eq_Abs_hypnat [of n]) +apply (simp add: hypnat_zero_def hypnat_minus hypnat_add) +done +declare hypnat_diff_add_0 [simp] + + +subsection{*Hyperreal Multiplication*} + +lemma hypnat_mult_congruent2: + "congruent2 hypnatrel (%X Y. hypnatrel``{%n. X n * Y n})" +by (unfold congruent2_def, auto, ultra) + +lemma hypnat_mult: + "Abs_hypnat(hypnatrel``{%n. X n}) * Abs_hypnat(hypnatrel``{%n. Y n}) = + Abs_hypnat(hypnatrel``{%n. X n * Y n})" +by (simp add: hypnat_mult_def UN_equiv_class2 [OF equiv_hypnatrel hypnat_mult_congruent2]) + +lemma hypnat_mult_commute: "(z::hypnat) * w = w * z" +apply (rule eq_Abs_hypnat [of z]) +apply (rule eq_Abs_hypnat [of w]) +apply (simp add: hypnat_mult mult_ac) +done + +lemma hypnat_mult_assoc: "((z1::hypnat) * z2) * z3 = z1 * (z2 * z3)" +apply (rule eq_Abs_hypnat [of z1]) +apply (rule eq_Abs_hypnat [of z2]) +apply (rule eq_Abs_hypnat [of z3]) +apply (simp add: hypnat_mult mult_assoc) +done + +lemma hypnat_mult_1: "(1::hypnat) * z = z" +apply (rule eq_Abs_hypnat [of z]) +apply (simp add: hypnat_mult hypnat_one_def) +done + +lemma hypnat_diff_mult_distrib: "((m::hypnat) - n) * k = (m * k) - (n * k)" +apply (rule eq_Abs_hypnat [of k]) +apply (rule eq_Abs_hypnat [of m]) +apply (rule eq_Abs_hypnat [of n]) +apply (simp add: hypnat_mult hypnat_minus diff_mult_distrib) +done + +lemma hypnat_diff_mult_distrib2: "(k::hypnat) * (m - n) = (k * m) - (k * n)" +by (simp add: hypnat_diff_mult_distrib hypnat_mult_commute [of k]) + +lemma hypnat_add_mult_distrib: "((z1::hypnat) + z2) * w = (z1 * w) + (z2 * w)" +apply (rule eq_Abs_hypnat [of z1]) +apply (rule eq_Abs_hypnat [of z2]) +apply (rule eq_Abs_hypnat [of w]) +apply (simp add: hypnat_mult hypnat_add add_mult_distrib) +done + +lemma hypnat_add_mult_distrib2: "(w::hypnat) * (z1 + z2) = (w * z1) + (w * z2)" +by (simp add: hypnat_mult_commute [of w] hypnat_add_mult_distrib) + +text{*one and zero are distinct*} +lemma hypnat_zero_not_eq_one: "(0::hypnat) \ (1::hypnat)" +by (auto simp add: hypnat_zero_def hypnat_one_def) +declare hypnat_zero_not_eq_one [THEN not_sym, simp] + + +text{*The Hypernaturals Form A Semiring*} +instance hypnat :: semiring +proof + fix i j k :: hypnat + show "(i + j) + k = i + (j + k)" by (rule hypnat_add_assoc) + show "i + j = j + i" by (rule hypnat_add_commute) + show "0 + i = i" by simp + show "(i * j) * k = i * (j * k)" by (rule hypnat_mult_assoc) + show "i * j = j * i" by (rule hypnat_mult_commute) + show "1 * i = i" by (rule hypnat_mult_1) + show "(i + j) * k = i * k + j * k" by (simp add: hypnat_add_mult_distrib) + show "0 \ (1::hypnat)" by (rule hypnat_zero_not_eq_one) + assume "k+i = k+j" + hence "(k+i) - k = (k+j) - k" by simp + thus "i=j" by simp +qed + + +subsection{*Properties of The @{text "\"} Relation*} + +lemma hypnat_le: + "(Abs_hypnat(hypnatrel``{%n. X n}) \ Abs_hypnat(hypnatrel``{%n. Y n})) = + ({n. X n \ Y n} \ FreeUltrafilterNat)" +apply (unfold hypnat_le_def) +apply (auto intro!: lemma_hypnatrel_refl, ultra) +done + +lemma hypnat_le_refl: "w \ (w::hypnat)" +apply (rule eq_Abs_hypnat [of w]) +apply (simp add: hypnat_le) +done + +lemma hypnat_le_trans: "[| i \ j; j \ k |] ==> i \ (k::hypnat)" +apply (rule eq_Abs_hypnat [of i]) +apply (rule eq_Abs_hypnat [of j]) +apply (rule eq_Abs_hypnat [of k]) +apply (simp add: hypnat_le, ultra) +done + +lemma hypnat_le_anti_sym: "[| z \ w; w \ z |] ==> z = (w::hypnat)" +apply (rule eq_Abs_hypnat [of z]) +apply (rule eq_Abs_hypnat [of w]) +apply (simp add: hypnat_le, ultra) +done + +(* Axiom 'order_less_le' of class 'order': *) +lemma hypnat_less_le: "((w::hypnat) < z) = (w \ z & w \ z)" +by (simp add: hypnat_less_def) + +instance hypnat :: order +proof qed + (assumption | + rule hypnat_le_refl hypnat_le_trans hypnat_le_anti_sym hypnat_less_le)+ + +(* Axiom 'linorder_linear' of class 'linorder': *) +lemma hypnat_le_linear: "(z::hypnat) \ w | w \ z" +apply (rule eq_Abs_hypnat [of z]) +apply (rule eq_Abs_hypnat [of w]) +apply (auto simp add: hypnat_le, ultra) +done + +instance hypnat :: linorder + by (intro_classes, rule hypnat_le_linear) + +lemma hypnat_add_left_mono: "x \ y ==> z + x \ z + (y::hypnat)" +apply (rule eq_Abs_hypnat [of x]) +apply (rule eq_Abs_hypnat [of y]) +apply (rule eq_Abs_hypnat [of z]) +apply (auto simp add: hypnat_le hypnat_add) +done + +lemma hypnat_mult_less_mono2: "[| (0::hypnat) z*x y ==> z + x \ z + y" + by (rule hypnat_add_left_mono) + show "x < y ==> 0 < z ==> z * x < z * y" + by (simp add: hypnat_mult_less_mono2) +qed + +lemma hypnat_mult_is_0 [simp]: "(m*n = (0::hypnat)) = (m=0 | n=0)" +apply (rule eq_Abs_hypnat [of m]) +apply (rule eq_Abs_hypnat [of n]) +apply (auto simp add: hypnat_zero_def hypnat_mult, ultra+) +done + + +subsection{*Theorems for Ordering*} + +lemma hypnat_less: + "(Abs_hypnat(hypnatrel``{%n. X n}) < Abs_hypnat(hypnatrel``{%n. Y n})) = + ({n. X n < Y n} \ FreeUltrafilterNat)" +apply (auto simp add: hypnat_le linorder_not_le [symmetric]) +apply (ultra+) +done + +lemma hypnat_not_less0 [iff]: "~ n < (0::hypnat)" +apply (rule eq_Abs_hypnat [of n]) +apply (auto simp add: hypnat_zero_def hypnat_less) +done + +lemma hypnat_less_one [iff]: + "(n < (1::hypnat)) = (n=0)" +apply (rule eq_Abs_hypnat [of n]) +apply (auto simp add: hypnat_zero_def hypnat_one_def hypnat_less) +done + +lemma hypnat_add_diff_inverse: "~ m n+(m-n) = (m::hypnat)" +apply (rule eq_Abs_hypnat [of m]) +apply (rule eq_Abs_hypnat [of n]) +apply (simp add: hypnat_minus hypnat_add hypnat_less split: nat_diff_split, ultra) +done + +lemma hypnat_le_add_diff_inverse [simp]: "n \ m ==> n+(m-n) = (m::hypnat)" +by (simp add: hypnat_add_diff_inverse linorder_not_less [symmetric]) + +lemma hypnat_le_add_diff_inverse2 [simp]: "n\m ==> (m-n)+n = (m::hypnat)" +by (simp add: hypnat_le_add_diff_inverse hypnat_add_commute) + +declare hypnat_le_add_diff_inverse2 [OF order_less_imp_le] + +lemma hypnat_le0 [iff]: "(0::hypnat) \ n" +by (simp add: linorder_not_less [symmetric]) + +lemma hypnat_add_self_le [simp]: "(x::hypnat) \ n + x" +by (insert add_right_mono [of 0 n x], simp) + +lemma hypnat_add_one_self_less [simp]: "(x::hypnat) < x + (1::hypnat)" +by (insert add_strict_left_mono [OF zero_less_one], auto) + +lemma hypnat_neq0_conv [iff]: "(n \ 0) = (0 < (n::hypnat))" +by (simp add: order_less_le) + +lemma hypnat_gt_zero_iff: "((0::hypnat) < n) = ((1::hypnat) \ n)" +by (auto simp add: linorder_not_less [symmetric]) + +lemma hypnat_gt_zero_iff2: "(0 < n) = (\m. n = m + (1::hypnat))" +apply safe + apply (rule_tac x = "n - (1::hypnat) " in exI) + apply (simp add: hypnat_gt_zero_iff) +apply (insert add_le_less_mono [OF _ zero_less_one, of 0], auto) +done + +subsection{*The Embedding @{term hypnat_of_nat} Preserves Ring and + Order Properties*} + +lemma hypnat_of_nat_add: + "hypnat_of_nat ((z::nat) + w) = hypnat_of_nat z + hypnat_of_nat w" +by (simp add: hypnat_of_nat_def hypnat_add) + +lemma hypnat_of_nat_minus: + "hypnat_of_nat ((z::nat) - w) = hypnat_of_nat z - hypnat_of_nat w" +by (simp add: hypnat_of_nat_def hypnat_minus) + +lemma hypnat_of_nat_mult: + "hypnat_of_nat (z * w) = hypnat_of_nat z * hypnat_of_nat w" +by (simp add: hypnat_of_nat_def hypnat_mult) + +lemma hypnat_of_nat_less_iff [simp]: + "(hypnat_of_nat z < hypnat_of_nat w) = (z < w)" +by (simp add: hypnat_less hypnat_of_nat_def) + +lemma hypnat_of_nat_le_iff [simp]: + "(hypnat_of_nat z \ hypnat_of_nat w) = (z \ w)" +by (simp add: linorder_not_less [symmetric]) + +lemma hypnat_of_nat_one: "hypnat_of_nat (Suc 0) = (1::hypnat)" +by (simp add: hypnat_of_nat_def hypnat_one_def) + +lemma hypnat_of_nat_zero: "hypnat_of_nat 0 = 0" +by (simp add: hypnat_of_nat_def hypnat_zero_def) + +lemma hypnat_of_nat_zero_iff: "(hypnat_of_nat n = 0) = (n = 0)" +by (auto intro: FreeUltrafilterNat_P + simp add: hypnat_of_nat_def hypnat_zero_def) + +lemma hypnat_of_nat_Suc: + "hypnat_of_nat (Suc n) = hypnat_of_nat n + (1::hypnat)" +by (auto simp add: hypnat_add hypnat_of_nat_def hypnat_one_def) + + +subsection{*Existence of an Infinite Hypernatural Number*} + +lemma hypnat_omega: "hypnatrel``{%n::nat. n} \ hypnat" +by auto + +lemma Rep_hypnat_omega: "Rep_hypnat(whn) \ hypnat" +by (simp add: hypnat_omega_def) + +text{*Existence of infinite number not corresponding to any natural number +follows because member @{term FreeUltrafilterNat} is not finite. +See @{text HyperDef.thy} for similar argument.*} + +lemma not_ex_hypnat_of_nat_eq_omega: + "~ (\x. hypnat_of_nat x = whn)" +apply (simp add: hypnat_omega_def hypnat_of_nat_def) +apply (auto dest: FreeUltrafilterNat_not_finite) +done + +lemma hypnat_of_nat_not_eq_omega: "hypnat_of_nat x \ whn" +by (cut_tac not_ex_hypnat_of_nat_eq_omega, auto) +declare hypnat_of_nat_not_eq_omega [THEN not_sym, simp] + + +subsection{*Properties of the set @{term Nats} of Embedded Natural Numbers*} + +(* Infinite hypernatural not in embedded Nats *) +lemma SHNAT_omega_not_mem [simp]: "whn \ Nats" +by (simp add: SHNat_def) + +(*----------------------------------------------------------------------- + Closure laws for members of (embedded) set standard naturals Nats + -----------------------------------------------------------------------*) +lemma SHNat_add: + "!!x::hypnat. [| x \ Nats; y \ Nats |] ==> x + y \ Nats" +apply (simp add: SHNat_def, safe) +apply (rule_tac x = "N + Na" in exI) +apply (simp add: hypnat_of_nat_add) +done + +lemma SHNat_minus: + "!!x::hypnat. [| x \ Nats; y \ Nats |] ==> x - y \ Nats" +apply (simp add: SHNat_def, safe) +apply (rule_tac x = "N - Na" in exI) +apply (simp add: hypnat_of_nat_minus) +done + +lemma SHNat_mult: + "!!x::hypnat. [| x \ Nats; y \ Nats |] ==> x * y \ Nats" +apply (simp add: SHNat_def, safe) +apply (rule_tac x = "N * Na" in exI) +apply (simp (no_asm) add: hypnat_of_nat_mult) +done + +lemma SHNat_add_cancel: "!!x::hypnat. [| x + y \ Nats; y \ Nats |] ==> x \ Nats" +by (drule_tac x = "x+y" in SHNat_minus, auto) + +lemma SHNat_hypnat_of_nat [simp]: "hypnat_of_nat x \ Nats" +by (simp add: SHNat_def, blast) + +lemma SHNat_hypnat_of_nat_one [simp]: "hypnat_of_nat (Suc 0) \ Nats" +by simp + +lemma SHNat_hypnat_of_nat_zero [simp]: "hypnat_of_nat 0 \ Nats" +by simp + +lemma SHNat_one [simp]: "(1::hypnat) \ Nats" +by (simp add: hypnat_of_nat_one [symmetric]) + +lemma SHNat_zero [simp]: "(0::hypnat) \ Nats" +by (simp add: hypnat_of_nat_zero [symmetric]) + +lemma SHNat_iff: "(x \ Nats) = (\y. x = hypnat_of_nat y)" +by (simp add: SHNat_def) + +lemma SHNat_hypnat_of_nat_iff: + "Nats = hypnat_of_nat ` (UNIV::nat set)" +by (auto simp add: SHNat_def) + +lemma leSuc_Un_eq: "{n. n \ Suc m} = {n. n \ m} Un {n. n = Suc m}" +by (auto simp add: le_Suc_eq) + +lemma finite_nat_le_segment: "finite {n::nat. n \ m}" +apply (induct_tac "m") +apply (auto simp add: leSuc_Un_eq) +done + +lemma lemma_unbounded_set [simp]: "{n::nat. m < n} \ FreeUltrafilterNat" +by (insert finite_nat_le_segment + [THEN FreeUltrafilterNat_finite, + THEN FreeUltrafilterNat_Compl_mem, of m], ultra) + +(*????hyperdef*) +lemma cofinite_mem_FreeUltrafilterNat: "finite (-X) ==> X \ FreeUltrafilterNat" +apply (drule FreeUltrafilterNat_finite) +apply (simp add: FreeUltrafilterNat_Compl_iff2 [symmetric]) +done + +lemma Compl_Collect_le: "- {n::nat. N \ n} = {n. n < N}" +by (simp add: Collect_neg_eq [symmetric] linorder_not_le) + +lemma hypnat_omega_gt_SHNat: + "n \ Nats ==> n < whn" +apply (auto simp add: SHNat_def hypnat_of_nat_def hypnat_less_def + hypnat_le_def hypnat_omega_def) + prefer 2 apply (force dest: FreeUltrafilterNat_not_finite) +apply (auto intro!: exI) +apply (rule cofinite_mem_FreeUltrafilterNat) +apply (simp add: Compl_Collect_le finite_nat_segment) +done + +lemma hypnat_of_nat_less_whn: "hypnat_of_nat n < whn" +by (insert hypnat_omega_gt_SHNat [of "hypnat_of_nat n"], auto) +declare hypnat_of_nat_less_whn [simp] + +lemma hypnat_of_nat_le_whn: "hypnat_of_nat n \ whn" +by (rule hypnat_of_nat_less_whn [THEN order_less_imp_le]) +declare hypnat_of_nat_le_whn [simp] + +lemma hypnat_zero_less_hypnat_omega [simp]: "0 < whn" +by (simp add: hypnat_omega_gt_SHNat) + +lemma hypnat_one_less_hypnat_omega [simp]: "(1::hypnat) < whn" +by (simp add: hypnat_omega_gt_SHNat) + + +subsection{*Infinite Hypernatural Numbers -- @{term HNatInfinite}*} + +lemma HNatInfinite_whn: "whn \ HNatInfinite" +by (simp add: HNatInfinite_def SHNat_def) +declare HNatInfinite_whn [simp] + +lemma SHNat_not_HNatInfinite: "x \ Nats ==> x \ HNatInfinite" +by (simp add: HNatInfinite_def) + +lemma not_HNatInfinite_SHNat: "x \ HNatInfinite ==> x \ Nats" +by (simp add: HNatInfinite_def) + +lemma not_SHNat_HNatInfinite: "x \ Nats ==> x \ HNatInfinite" +by (simp add: HNatInfinite_def) + +lemma HNatInfinite_not_SHNat: "x \ HNatInfinite ==> x \ Nats" +by (simp add: HNatInfinite_def) + +lemma SHNat_not_HNatInfinite_iff: "(x \ Nats) = (x \ HNatInfinite)" +by (blast intro!: SHNat_not_HNatInfinite not_HNatInfinite_SHNat) + +lemma not_SHNat_HNatInfinite_iff: "(x \ Nats) = (x \ HNatInfinite)" +by (blast intro!: not_SHNat_HNatInfinite HNatInfinite_not_SHNat) + +lemma SHNat_HNatInfinite_disj: "x \ Nats | x \ HNatInfinite" +by (simp add: SHNat_not_HNatInfinite_iff) + + +subsection{*Alternative Characterization of the Set of Infinite Hypernaturals: +@{term "HNatInfinite = {N. \n \ Nats. n < N}"}*} + +(*??delete? similar reasoning in hypnat_omega_gt_SHNat above*) +lemma HNatInfinite_FreeUltrafilterNat_lemma: "\N::nat. {n. f n \ N} \ FreeUltrafilterNat + ==> {n. N < f n} \ FreeUltrafilterNat" +apply (induct_tac "N") +apply (drule_tac x = 0 in spec) +apply (rule ccontr, drule FreeUltrafilterNat_Compl_mem, drule FreeUltrafilterNat_Int, assumption, simp) +apply (drule_tac x = "Suc n" in spec, ultra) +done + +lemma HNatInfinite_iff: "HNatInfinite = {N. \n \ Nats. n < N}" +apply (unfold HNatInfinite_def SHNat_def hypnat_of_nat_def, safe) +apply (drule_tac [2] x = "Abs_hypnat (hypnatrel `` {%n. N}) " in bspec) +apply (rule_tac z = x in eq_Abs_hypnat) +apply (rule_tac z = n in eq_Abs_hypnat) +apply (auto simp add: hypnat_less) +apply (auto elim: HNatInfinite_FreeUltrafilterNat_lemma + simp add: FreeUltrafilterNat_Compl_iff1 Collect_neg_eq [symmetric]) +done + +subsection{*Alternative Characterization of @{term HNatInfinite} using +Free Ultrafilter*} + +lemma HNatInfinite_FreeUltrafilterNat: + "x \ HNatInfinite + ==> \X \ Rep_hypnat x. \u. {n. u < X n}: FreeUltrafilterNat" +apply (rule eq_Abs_hypnat [of x]) +apply (auto simp add: HNatInfinite_iff SHNat_iff hypnat_of_nat_def) +apply (rule bexI [OF _ lemma_hypnatrel_refl], clarify) +apply (drule_tac x = "hypnat_of_nat u" in bspec, simp) +apply (auto simp add: hypnat_of_nat_def hypnat_less) +done + +lemma FreeUltrafilterNat_HNatInfinite: + "\X \ Rep_hypnat x. \u. {n. u < X n}: FreeUltrafilterNat + ==> x \ HNatInfinite" +apply (rule eq_Abs_hypnat [of x]) +apply (auto simp add: hypnat_less HNatInfinite_iff SHNat_iff hypnat_of_nat_def) +apply (drule spec, ultra, auto) +done + +lemma HNatInfinite_FreeUltrafilterNat_iff: + "(x \ HNatInfinite) = + (\X \ Rep_hypnat x. \u. {n. u < X n}: FreeUltrafilterNat)" +apply (blast intro: HNatInfinite_FreeUltrafilterNat FreeUltrafilterNat_HNatInfinite) +done + +lemma HNatInfinite_gt_one: "x \ HNatInfinite ==> (1::hypnat) < x" +by (auto simp add: HNatInfinite_iff) +declare HNatInfinite_gt_one [simp] + +lemma zero_not_mem_HNatInfinite: "0 \ HNatInfinite" +apply (auto simp add: HNatInfinite_iff) +apply (drule_tac a = " (1::hypnat) " in equals0D) +apply simp +done +declare zero_not_mem_HNatInfinite [simp] + +lemma HNatInfinite_not_eq_zero: "x \ HNatInfinite ==> 0 < x" +apply (drule HNatInfinite_gt_one) +apply (auto simp add: order_less_trans [OF zero_less_one]) +done + +lemma HNatInfinite_ge_one [simp]: "x \ HNatInfinite ==> (1::hypnat) \ x" +by (blast intro: order_less_imp_le HNatInfinite_gt_one) + + +subsection{*Closure Rules*} + +lemma HNatInfinite_add: "[| x \ HNatInfinite; y \ HNatInfinite |] + ==> x + y \ HNatInfinite" +apply (auto simp add: HNatInfinite_iff) +apply (drule bspec, assumption) +apply (drule bspec [OF _ SHNat_zero]) +apply (drule add_strict_mono, assumption, simp) +done + +lemma HNatInfinite_SHNat_add: "[| x \ HNatInfinite; y \ Nats |] ==> x + y \ HNatInfinite" +apply (rule ccontr, drule not_HNatInfinite_SHNat) +apply (drule_tac x = "x + y" in SHNat_minus) +apply (auto simp add: SHNat_not_HNatInfinite_iff) +done + +lemma HNatInfinite_SHNat_diff: "[| x \ HNatInfinite; y \ Nats |] ==> x - y \ HNatInfinite" +apply (rule ccontr, drule not_HNatInfinite_SHNat) +apply (drule_tac x = "x - y" in SHNat_add) +apply (subgoal_tac [2] "y \ x") +apply (auto dest!: hypnat_le_add_diff_inverse2 simp add: not_SHNat_HNatInfinite_iff [symmetric]) +apply (auto intro!: order_less_imp_le simp add: not_SHNat_HNatInfinite_iff HNatInfinite_iff) +done + +lemma HNatInfinite_add_one: "x \ HNatInfinite ==> x + (1::hypnat) \ HNatInfinite" +by (auto intro: HNatInfinite_SHNat_add) + +lemma HNatInfinite_minus_one: "x \ HNatInfinite ==> x - (1::hypnat) \ HNatInfinite" +apply (rule ccontr, drule not_HNatInfinite_SHNat) +apply (drule_tac x = "x - (1::hypnat) " and y = " (1::hypnat) " in SHNat_add) +apply (auto simp add: not_SHNat_HNatInfinite_iff [symmetric]) +done + +lemma HNatInfinite_is_Suc: "x \ HNatInfinite ==> \y. x = y + (1::hypnat)" +apply (rule_tac x = "x - (1::hypnat) " in exI) +apply auto +done + + +subsection{*@{term HNat}: the Hypernaturals Embedded in the Hyperreals*} + +text{*Obtained using the nonstandard extension of the naturals*} + +lemma HNat_hypreal_of_nat: "hypreal_of_nat N \ HNat" +apply (simp add: HNat_def starset_def hypreal_of_nat_def hypreal_of_real_def, auto, ultra) +apply (rule_tac x = N in exI, auto) +done +declare HNat_hypreal_of_nat [simp] + +lemma HNat_add: "[| x \ HNat; y \ HNat |] ==> x + y \ HNat" +apply (simp add: HNat_def starset_def) +apply (rule_tac z = x in eq_Abs_hypreal) +apply (rule_tac z = y in eq_Abs_hypreal) +apply (auto dest!: bspec intro: lemma_hyprel_refl simp add: hypreal_add, ultra) +apply (rule_tac x = "no+noa" in exI, auto) +done + +lemma HNat_mult: + "[| x \ HNat; y \ HNat |] ==> x * y \ HNat" +apply (simp add: HNat_def starset_def) +apply (rule_tac z = x in eq_Abs_hypreal) +apply (rule_tac z = y in eq_Abs_hypreal) +apply (auto dest!: bspec intro: lemma_hyprel_refl simp add: hypreal_mult, ultra) +apply (rule_tac x = "no*noa" in exI, auto) +done + + +subsection{*Embedding of the Hypernaturals into the Hyperreals*} + +(*WARNING: FRAGILE!*) +lemma lemma_hyprel_FUFN: "(Ya \ hyprel ``{%n. f(n)}) = + ({n. f n = Ya n} \ FreeUltrafilterNat)" +apply auto +done + +lemma hypreal_of_hypnat: + "hypreal_of_hypnat (Abs_hypnat(hypnatrel``{%n. X n})) = + Abs_hypreal(hyprel `` {%n. real (X n)})" +apply (simp add: hypreal_of_hypnat_def) +apply (rule_tac f = Abs_hypreal in arg_cong) +apply (auto elim: FreeUltrafilterNat_Int [THEN FreeUltrafilterNat_subset] + simp add: lemma_hyprel_FUFN) +done + +lemma inj_hypreal_of_hypnat: "inj(hypreal_of_hypnat)" +apply (rule inj_onI) +apply (rule_tac z = x in eq_Abs_hypnat) +apply (rule_tac z = y in eq_Abs_hypnat) +apply (auto simp add: hypreal_of_hypnat) +done + +declare inj_hypreal_of_hypnat [THEN inj_eq, simp] +declare inj_hypnat_of_nat [THEN inj_eq, simp] + +lemma hypreal_of_hypnat_zero: "hypreal_of_hypnat 0 = 0" +by (simp add: hypnat_zero_def hypreal_zero_def hypreal_of_hypnat) + +lemma hypreal_of_hypnat_one: "hypreal_of_hypnat (1::hypnat) = 1" +by (simp add: hypnat_one_def hypreal_one_def hypreal_of_hypnat) + +lemma hypreal_of_hypnat_add [simp]: + "hypreal_of_hypnat (m + n) = hypreal_of_hypnat m + hypreal_of_hypnat n" +apply (rule eq_Abs_hypnat [of m]) +apply (rule eq_Abs_hypnat [of n]) +apply (simp add: hypreal_of_hypnat hypreal_add hypnat_add real_of_nat_add) +done + +lemma hypreal_of_hypnat_mult [simp]: + "hypreal_of_hypnat (m * n) = hypreal_of_hypnat m * hypreal_of_hypnat n" +apply (rule eq_Abs_hypnat [of m]) +apply (rule eq_Abs_hypnat [of n]) +apply (simp add: hypreal_of_hypnat hypreal_mult hypnat_mult real_of_nat_mult) +done + +lemma hypreal_of_hypnat_less_iff [simp]: + "(hypreal_of_hypnat n < hypreal_of_hypnat m) = (n < m)" +apply (rule eq_Abs_hypnat [of m]) +apply (rule eq_Abs_hypnat [of n]) +apply (simp add: hypreal_of_hypnat hypreal_less hypnat_less) +done + +lemma hypreal_of_hypnat_eq_zero_iff: "(hypreal_of_hypnat N = 0) = (N = 0)" +by (simp add: hypreal_of_hypnat_zero [symmetric]) +declare hypreal_of_hypnat_eq_zero_iff [simp] + +lemma hypreal_of_hypnat_ge_zero [simp]: "0 \ hypreal_of_hypnat n" +apply (rule eq_Abs_hypnat [of n]) +apply (simp add: hypreal_of_hypnat hypreal_zero_num hypreal_le) +done + +(*????DELETE??*) +lemma hypnat_eq_zero: "\n. N \ n ==> N = (0::hypnat)" +apply (drule_tac x = 0 in spec) +apply (rule_tac z = N in eq_Abs_hypnat) +apply (auto simp add: hypnat_le hypnat_zero_def) +done + +(*????DELETE??*) +lemma hypnat_not_all_eq_zero: "~ (\n. n = (0::hypnat))" +by auto + +(*????DELETE??*) +lemma hypnat_le_one_eq_one: "n \ 0 ==> (n \ (1::hypnat)) = (n = (1::hypnat))" +by (auto simp add: order_le_less) + +(*WHERE DO THESE BELONG???*) +lemma HNatInfinite_inverse_Infinitesimal: "n \ HNatInfinite ==> inverse (hypreal_of_hypnat n) \ Infinitesimal" +apply (rule eq_Abs_hypnat [of n]) +apply (auto simp add: hypreal_of_hypnat hypreal_inverse HNatInfinite_FreeUltrafilterNat_iff Infinitesimal_FreeUltrafilterNat_iff2) +apply (rule bexI, rule_tac [2] lemma_hyprel_refl, auto) +apply (drule_tac x = "m + 1" in spec, ultra) +done +declare HNatInfinite_inverse_Infinitesimal [simp] + +lemma HNatInfinite_inverse_not_zero: "n \ HNatInfinite ==> hypreal_of_hypnat n \ 0" +by (simp add: HNatInfinite_not_eq_zero) + + + +ML +{* +val hypnat_of_nat_def = thm"hypnat_of_nat_def"; +val HNat_def = thm"HNat_def"; +val HNatInfinite_def = thm"HNatInfinite_def"; +val hypreal_of_hypnat_def = thm"hypreal_of_hypnat_def"; +val SNat_def = thm"SNat_def"; +val SHNat_def = thm"SHNat_def"; +val hypnat_zero_def = thm"hypnat_zero_def"; +val hypnat_one_def = thm"hypnat_one_def"; +val hypnat_omega_def = thm"hypnat_omega_def"; + +val hypnatrel_iff = thm "hypnatrel_iff"; +val hypnatrel_refl = thm "hypnatrel_refl"; +val hypnatrel_sym = thm "hypnatrel_sym"; +val hypnatrel_trans = thm "hypnatrel_trans"; +val equiv_hypnatrel = thm "equiv_hypnatrel"; +val equiv_hypnatrel_iff = thms "equiv_hypnatrel_iff"; +val hypnatrel_in_hypnat = thm "hypnatrel_in_hypnat"; +val inj_on_Abs_hypnat = thm "inj_on_Abs_hypnat"; +val inj_Rep_hypnat = thm "inj_Rep_hypnat"; +val lemma_hypnatrel_refl = thm "lemma_hypnatrel_refl"; +val hypnat_empty_not_mem = thm "hypnat_empty_not_mem"; +val Rep_hypnat_nonempty = thm "Rep_hypnat_nonempty"; +val inj_hypnat_of_nat = thm "inj_hypnat_of_nat"; +val eq_Abs_hypnat = thm "eq_Abs_hypnat"; +val hypnat_add_congruent2 = thm "hypnat_add_congruent2"; +val hypnat_add = thm "hypnat_add"; +val hypnat_add_commute = thm "hypnat_add_commute"; +val hypnat_add_assoc = thm "hypnat_add_assoc"; +val hypnat_add_zero_left = thm "hypnat_add_zero_left"; +val hypnat_minus_congruent2 = thm "hypnat_minus_congruent2"; +val hypnat_minus = thm "hypnat_minus"; +val hypnat_minus_zero = thm "hypnat_minus_zero"; +val hypnat_diff_0_eq_0 = thm "hypnat_diff_0_eq_0"; +val hypnat_add_is_0 = thm "hypnat_add_is_0"; +val hypnat_diff_diff_left = thm "hypnat_diff_diff_left"; +val hypnat_diff_commute = thm "hypnat_diff_commute"; +val hypnat_diff_add_inverse = thm "hypnat_diff_add_inverse"; +val hypnat_diff_add_inverse2 = thm "hypnat_diff_add_inverse2"; +val hypnat_diff_cancel = thm "hypnat_diff_cancel"; +val hypnat_diff_cancel2 = thm "hypnat_diff_cancel2"; +val hypnat_diff_add_0 = thm "hypnat_diff_add_0"; +val hypnat_mult_congruent2 = thm "hypnat_mult_congruent2"; +val hypnat_mult = thm "hypnat_mult"; +val hypnat_mult_commute = thm "hypnat_mult_commute"; +val hypnat_mult_assoc = thm "hypnat_mult_assoc"; +val hypnat_mult_1 = thm "hypnat_mult_1"; +val hypnat_diff_mult_distrib = thm "hypnat_diff_mult_distrib"; +val hypnat_diff_mult_distrib2 = thm "hypnat_diff_mult_distrib2"; +val hypnat_add_mult_distrib = thm "hypnat_add_mult_distrib"; +val hypnat_add_mult_distrib2 = thm "hypnat_add_mult_distrib2"; +val hypnat_zero_not_eq_one = thm "hypnat_zero_not_eq_one"; +val hypnat_le = thm "hypnat_le"; +val hypnat_le_refl = thm "hypnat_le_refl"; +val hypnat_le_trans = thm "hypnat_le_trans"; +val hypnat_le_anti_sym = thm "hypnat_le_anti_sym"; +val hypnat_less_le = thm "hypnat_less_le"; +val hypnat_le_linear = thm "hypnat_le_linear"; +val hypnat_add_left_mono = thm "hypnat_add_left_mono"; +val hypnat_mult_less_mono2 = thm "hypnat_mult_less_mono2"; +val hypnat_mult_is_0 = thm "hypnat_mult_is_0"; +val hypnat_less = thm "hypnat_less"; +val hypnat_not_less0 = thm "hypnat_not_less0"; +val hypnat_less_one = thm "hypnat_less_one"; +val hypnat_add_diff_inverse = thm "hypnat_add_diff_inverse"; +val hypnat_le_add_diff_inverse = thm "hypnat_le_add_diff_inverse"; +val hypnat_le_add_diff_inverse2 = thm "hypnat_le_add_diff_inverse2"; +val hypnat_le0 = thm "hypnat_le0"; +val hypnat_add_self_le = thm "hypnat_add_self_le"; +val hypnat_add_one_self_less = thm "hypnat_add_one_self_less"; +val hypnat_neq0_conv = thm "hypnat_neq0_conv"; +val hypnat_gt_zero_iff = thm "hypnat_gt_zero_iff"; +val hypnat_gt_zero_iff2 = thm "hypnat_gt_zero_iff2"; +val hypnat_of_nat_add = thm "hypnat_of_nat_add"; +val hypnat_of_nat_minus = thm "hypnat_of_nat_minus"; +val hypnat_of_nat_mult = thm "hypnat_of_nat_mult"; +val hypnat_of_nat_less_iff = thm "hypnat_of_nat_less_iff"; +val hypnat_of_nat_le_iff = thm "hypnat_of_nat_le_iff"; +val hypnat_of_nat_one = thm "hypnat_of_nat_one"; +val hypnat_of_nat_zero = thm "hypnat_of_nat_zero"; +val hypnat_of_nat_zero_iff = thm "hypnat_of_nat_zero_iff"; +val hypnat_of_nat_Suc = thm "hypnat_of_nat_Suc"; +val hypnat_omega = thm "hypnat_omega"; +val Rep_hypnat_omega = thm "Rep_hypnat_omega"; +val not_ex_hypnat_of_nat_eq_omega = thm "not_ex_hypnat_of_nat_eq_omega"; +val hypnat_of_nat_not_eq_omega = thm "hypnat_of_nat_not_eq_omega"; +val SHNAT_omega_not_mem = thm "SHNAT_omega_not_mem"; +val SHNat_add = thm "SHNat_add"; +val SHNat_minus = thm "SHNat_minus"; +val SHNat_mult = thm "SHNat_mult"; +val SHNat_add_cancel = thm "SHNat_add_cancel"; +val SHNat_hypnat_of_nat = thm "SHNat_hypnat_of_nat"; +val SHNat_hypnat_of_nat_one = thm "SHNat_hypnat_of_nat_one"; +val SHNat_hypnat_of_nat_zero = thm "SHNat_hypnat_of_nat_zero"; +val SHNat_one = thm "SHNat_one"; +val SHNat_zero = thm "SHNat_zero"; +val SHNat_iff = thm "SHNat_iff"; +val SHNat_hypnat_of_nat_iff = thm "SHNat_hypnat_of_nat_iff"; +val leSuc_Un_eq = thm "leSuc_Un_eq"; +val finite_nat_le_segment = thm "finite_nat_le_segment"; +val lemma_unbounded_set = thm "lemma_unbounded_set"; +val cofinite_mem_FreeUltrafilterNat = thm "cofinite_mem_FreeUltrafilterNat"; +val Compl_Collect_le = thm "Compl_Collect_le"; +val hypnat_omega_gt_SHNat = thm "hypnat_omega_gt_SHNat"; +val hypnat_of_nat_less_whn = thm "hypnat_of_nat_less_whn"; +val hypnat_of_nat_le_whn = thm "hypnat_of_nat_le_whn"; +val hypnat_zero_less_hypnat_omega = thm "hypnat_zero_less_hypnat_omega"; +val hypnat_one_less_hypnat_omega = thm "hypnat_one_less_hypnat_omega"; +val HNatInfinite_whn = thm "HNatInfinite_whn"; +val SHNat_not_HNatInfinite = thm "SHNat_not_HNatInfinite"; +val not_HNatInfinite_SHNat = thm "not_HNatInfinite_SHNat"; +val not_SHNat_HNatInfinite = thm "not_SHNat_HNatInfinite"; +val HNatInfinite_not_SHNat = thm "HNatInfinite_not_SHNat"; +val SHNat_not_HNatInfinite_iff = thm "SHNat_not_HNatInfinite_iff"; +val not_SHNat_HNatInfinite_iff = thm "not_SHNat_HNatInfinite_iff"; +val SHNat_HNatInfinite_disj = thm "SHNat_HNatInfinite_disj"; +val HNatInfinite_FreeUltrafilterNat_lemma = thm "HNatInfinite_FreeUltrafilterNat_lemma"; +val HNatInfinite_iff = thm "HNatInfinite_iff"; +val HNatInfinite_FreeUltrafilterNat = thm "HNatInfinite_FreeUltrafilterNat"; +val FreeUltrafilterNat_HNatInfinite = thm "FreeUltrafilterNat_HNatInfinite"; +val HNatInfinite_FreeUltrafilterNat_iff = thm "HNatInfinite_FreeUltrafilterNat_iff"; +val HNatInfinite_gt_one = thm "HNatInfinite_gt_one"; +val zero_not_mem_HNatInfinite = thm "zero_not_mem_HNatInfinite"; +val HNatInfinite_not_eq_zero = thm "HNatInfinite_not_eq_zero"; +val HNatInfinite_ge_one = thm "HNatInfinite_ge_one"; +val HNatInfinite_add = thm "HNatInfinite_add"; +val HNatInfinite_SHNat_add = thm "HNatInfinite_SHNat_add"; +val HNatInfinite_SHNat_diff = thm "HNatInfinite_SHNat_diff"; +val HNatInfinite_add_one = thm "HNatInfinite_add_one"; +val HNatInfinite_minus_one = thm "HNatInfinite_minus_one"; +val HNatInfinite_is_Suc = thm "HNatInfinite_is_Suc"; +val HNat_hypreal_of_nat = thm "HNat_hypreal_of_nat"; +val HNat_add = thm "HNat_add"; +val HNat_mult = thm "HNat_mult"; +val lemma_hyprel_FUFN = thm "lemma_hyprel_FUFN"; +val hypreal_of_hypnat = thm "hypreal_of_hypnat"; +val inj_hypreal_of_hypnat = thm "inj_hypreal_of_hypnat"; +val hypreal_of_hypnat_zero = thm "hypreal_of_hypnat_zero"; +val hypreal_of_hypnat_one = thm "hypreal_of_hypnat_one"; +val hypreal_of_hypnat_add = thm "hypreal_of_hypnat_add"; +val hypreal_of_hypnat_mult = thm "hypreal_of_hypnat_mult"; +val hypreal_of_hypnat_less_iff = thm "hypreal_of_hypnat_less_iff"; +val hypreal_of_hypnat_eq_zero_iff = thm "hypreal_of_hypnat_eq_zero_iff"; +val hypreal_of_hypnat_ge_zero = thm "hypreal_of_hypnat_ge_zero"; +val hypnat_eq_zero = thm "hypnat_eq_zero"; +val hypnat_not_all_eq_zero = thm "hypnat_not_all_eq_zero"; +val hypnat_le_one_eq_one = thm "hypnat_le_one_eq_one"; +val HNatInfinite_inverse_Infinitesimal = thm "HNatInfinite_inverse_Infinitesimal"; +val HNatInfinite_inverse_not_zero = thm "HNatInfinite_inverse_not_zero"; +*} + +end