diff -r a7acd6c68d9b -r c7f621786035 src/HOL/Lattices.thy --- a/src/HOL/Lattices.thy Wed Dec 30 01:08:33 2009 +0100 +++ b/src/HOL/Lattices.thy Wed Dec 30 10:24:53 2009 +0100 @@ -201,7 +201,7 @@ shows "x \ (y \ z) = (x \ y) \ (x \ z)" proof- have "x \ (y \ z) = (x \ (x \ z)) \ (y \ z)" by(simp add:sup_inf_absorb) - also have "\ = x \ (z \ (x \ y))" by(simp add:D inf_commute sup_assoc del:sup_absorb1) + also have "\ = x \ (z \ (x \ y))" by(simp add:D inf_commute sup_assoc) also have "\ = ((x \ y) \ x) \ ((x \ y) \ z)" by(simp add:inf_sup_absorb inf_commute) also have "\ = (x \ y) \ (x \ z)" by(simp add:D) @@ -213,7 +213,7 @@ shows "x \ (y \ z) = (x \ y) \ (x \ z)" proof- have "x \ (y \ z) = (x \ (x \ z)) \ (y \ z)" by(simp add:inf_sup_absorb) - also have "\ = x \ (z \ (x \ y))" by(simp add:D sup_commute inf_assoc del:inf_absorb1) + also have "\ = x \ (z \ (x \ y))" by(simp add:D sup_commute inf_assoc) also have "\ = ((x \ y) \ x) \ ((x \ y) \ z)" by(simp add:sup_inf_absorb sup_commute) also have "\ = (x \ y) \ (x \ z)" by(simp add:D) @@ -404,7 +404,7 @@ by (simp add: inf_sup_distrib1) then have "- x \ \ = y \ \" using sup_compl_top assms(2) by simp - then show "- x = y" by (simp add: inf_top_right) + then show "- x = y" by simp qed lemma double_compl [simp]: