diff -r 66512c9e6bd6 -r c820b3cc3df0 src/HOL/Subst/UTerm.thy --- a/src/HOL/Subst/UTerm.thy Wed Jun 21 15:14:58 1995 +0200 +++ b/src/HOL/Subst/UTerm.thy Wed Jun 21 15:47:10 1995 +0200 @@ -23,10 +23,10 @@ Var :: "'a => 'a uterm" Const :: "'a => 'a uterm" Comb :: "['a uterm, 'a uterm] => 'a uterm" - UTerm_rec :: "['a item, 'a item => 'b, 'a item => 'b, \ -\ ['a item , 'a item, 'b, 'b]=>'b] => 'b" - uterm_rec :: "['a uterm, 'a => 'b, 'a => 'b, \ -\ ['a uterm, 'a uterm,'b,'b]=>'b] => 'b" + UTerm_rec :: "['a item, 'a item => 'b, 'a item => 'b, + ['a item , 'a item, 'b, 'b]=>'b] => 'b" + uterm_rec :: "['a uterm, 'a => 'b, 'a => 'b, + ['a uterm, 'a uterm,'b,'b]=>'b] => 'b" defs (*defining the concrete constructors*) @@ -54,12 +54,12 @@ (*uterm recursion*) UTerm_rec_def - "UTerm_rec M b c d == wfrec (trancl pred_sexp) M \ -\ (Case (%x g.b(x)) (Case (%y g. c(y)) (Split (%x y g. d x y (g x) (g y)))))" + "UTerm_rec M b c d == wfrec (trancl pred_sexp) M + (Case (%x g.b(x)) (Case (%y g. c(y)) (Split (%x y g. d x y (g x) (g y)))))" uterm_rec_def - "uterm_rec t b c d == \ -\ UTerm_rec (Rep_uterm t) (%x.b(Inv Leaf x)) (%x.c(Inv Leaf x)) \ -\ (%x y q r.d (Abs_uterm x) (Abs_uterm y) q r)" + "uterm_rec t b c d == + UTerm_rec (Rep_uterm t) (%x.b(Inv Leaf x)) (%x.c(Inv Leaf x)) + (%x y q r.d (Abs_uterm x) (Abs_uterm y) q r)" end