diff -r 17d8b3f6d744 -r c8bcb14fcfa8 src/HOL/Matrix_LP/SparseMatrix.thy --- a/src/HOL/Matrix_LP/SparseMatrix.thy Wed Aug 21 14:09:44 2024 +0100 +++ b/src/HOL/Matrix_LP/SparseMatrix.thy Thu Aug 22 22:26:28 2024 +0100 @@ -3,7 +3,7 @@ *) theory SparseMatrix -imports Matrix + imports Matrix begin type_synonym 'a spvec = "(nat * 'a) list" @@ -30,75 +30,70 @@ lemma sparse_row_vector_cons[simp]: "sparse_row_vector (a # arr) = (singleton_matrix 0 (fst a) (snd a)) + (sparse_row_vector arr)" - apply (induct arr) - apply (auto simp add: sparse_row_vector_def) - apply (simp add: foldl_distrstart [of "\m x. m + singleton_matrix 0 (fst x) (snd x)" "\x m. singleton_matrix 0 (fst x) (snd x) + m"]) - done + by (induct arr) (auto simp: foldl_distrstart sparse_row_vector_def) lemma sparse_row_vector_append[simp]: "sparse_row_vector (a @ b) = (sparse_row_vector a) + (sparse_row_vector b)" by (induct a) auto -lemma nrows_spvec[simp]: "nrows (sparse_row_vector x) <= (Suc 0)" - apply (induct x) - apply (simp_all add: add_nrows) - done +lemma nrows_spvec[simp]: "nrows (sparse_row_vector x) \ (Suc 0)" + by (induct x) (auto simp: add_nrows) lemma sparse_row_matrix_cons: "sparse_row_matrix (a#arr) = ((move_matrix (sparse_row_vector (snd a)) (int (fst a)) 0)) + sparse_row_matrix arr" - apply (induct arr) - apply (auto simp add: sparse_row_matrix_def) - apply (simp add: foldl_distrstart[of "\m x. m + (move_matrix (sparse_row_vector (snd x)) (int (fst x)) 0)" - "% a m. (move_matrix (sparse_row_vector (snd a)) (int (fst a)) 0) + m"]) - done + by (induct arr) (auto simp: foldl_distrstart sparse_row_matrix_def) lemma sparse_row_matrix_append: "sparse_row_matrix (arr@brr) = (sparse_row_matrix arr) + (sparse_row_matrix brr)" - apply (induct arr) - apply (auto simp add: sparse_row_matrix_cons) - done + by (induct arr) (auto simp: sparse_row_matrix_cons) -primrec sorted_spvec :: "'a spvec \ bool" +fun sorted_spvec :: "'a spvec \ bool" where "sorted_spvec [] = True" -| sorted_spvec_step: "sorted_spvec (a#as) = (case as of [] \ True | b#bs \ ((fst a < fst b) & (sorted_spvec as)))" +| sorted_spvec_step1: "sorted_spvec [a] = True" +| sorted_spvec_step: "sorted_spvec ((m,x)#(n,y)#bs) = ((m < n) \ (sorted_spvec ((n,y)#bs)))" primrec sorted_spmat :: "'a spmat \ bool" where "sorted_spmat [] = True" -| "sorted_spmat (a#as) = ((sorted_spvec (snd a)) & (sorted_spmat as))" +| "sorted_spmat (a#as) = ((sorted_spvec (snd a)) \ (sorted_spmat as))" declare sorted_spvec.simps [simp del] lemma sorted_spvec_empty[simp]: "sorted_spvec [] = True" -by (simp add: sorted_spvec.simps) + by (simp add: sorted_spvec.simps) lemma sorted_spvec_cons1: "sorted_spvec (a#as) \ sorted_spvec as" -apply (induct as) -apply (auto simp add: sorted_spvec.simps) -done + using sorted_spvec.elims(2) sorted_spvec_empty by blast lemma sorted_spvec_cons2: "sorted_spvec (a#b#t) \ sorted_spvec (a#t)" -apply (induct t) -apply (auto simp add: sorted_spvec.simps) -done + by (smt (verit, del_insts) sorted_spvec_step order.strict_trans list.inject sorted_spvec.elims(3) surj_pair) lemma sorted_spvec_cons3: "sorted_spvec(a#b#t) \ fst a < fst b" -apply (auto simp add: sorted_spvec.simps) -done + by (metis sorted_spvec_step prod.collapse) -lemma sorted_sparse_row_vector_zero[rule_format]: "m <= n \ sorted_spvec ((n,a)#arr) \ Rep_matrix (sparse_row_vector arr) j m = 0" -apply (induct arr) -apply (auto) -apply (frule sorted_spvec_cons2,simp)+ -apply (frule sorted_spvec_cons3, simp) -done +lemma sorted_sparse_row_vector_zero: + assumes "m \ n" + shows "sorted_spvec ((n,a)#arr) \ Rep_matrix (sparse_row_vector arr) j m = 0" +proof (induct arr) + case Nil + then show ?case by auto +next + case (Cons a arr) + with assms show ?case + by (auto dest: sorted_spvec_cons2 sorted_spvec_cons3) +qed -lemma sorted_sparse_row_matrix_zero[rule_format]: "m <= n \ sorted_spvec ((n,a)#arr) \ Rep_matrix (sparse_row_matrix arr) m j = 0" - apply (induct arr) - apply (auto) - apply (frule sorted_spvec_cons2, simp) - apply (frule sorted_spvec_cons3, simp) - apply (simp add: sparse_row_matrix_cons) - done +lemma sorted_sparse_row_matrix_zero[rule_format]: + assumes "m \ n" + shows "sorted_spvec ((n,a)#arr) \ Rep_matrix (sparse_row_matrix arr) m j = 0" +proof (induct arr) + case Nil + then show ?case by auto +next + case (Cons a arr) + with assms show ?case + unfolding sparse_row_matrix_cons + by (auto dest: sorted_spvec_cons2 sorted_spvec_cons3) +qed primrec minus_spvec :: "('a::ab_group_add) spvec \ 'a spvec" where @@ -112,49 +107,45 @@ lemma sparse_row_vector_minus: "sparse_row_vector (minus_spvec v) = - (sparse_row_vector v)" - apply (induct v) - apply (simp_all add: sparse_row_vector_cons) - apply (simp add: Rep_matrix_inject[symmetric]) - apply (rule ext)+ - apply simp - done - -instance matrix :: (lattice_ab_group_add_abs) lattice_ab_group_add_abs - apply standard - unfolding abs_matrix_def - apply rule - done - (*FIXME move*) +proof (induct v) + case Nil + then show ?case + by auto +next + case (Cons a v) + then have "singleton_matrix 0 (fst a) (- snd a) = - singleton_matrix 0 (fst a) (snd a)" + by (simp add: Rep_matrix_inject minus_matrix_def) + then show ?case + by (simp add: local.Cons) +qed lemma sparse_row_vector_abs: "sorted_spvec (v :: 'a::lattice_ring spvec) \ sparse_row_vector (abs_spvec v) = \sparse_row_vector v\" - apply (induct v) - apply simp_all - apply (frule_tac sorted_spvec_cons1, simp) - apply (simp only: Rep_matrix_inject[symmetric]) - apply (rule ext)+ - apply auto - apply (subgoal_tac "Rep_matrix (sparse_row_vector v) 0 a = 0") - apply (simp) - apply (rule sorted_sparse_row_vector_zero) - apply auto - done +proof (induct v) + case Nil + then show ?case + by simp +next + case (Cons ab v) + then have v: "sorted_spvec v" + using sorted_spvec_cons1 by blast + show ?case + proof (cases ab) + case (Pair a b) + then have 0: "Rep_matrix (sparse_row_vector v) 0 a = 0" + using Cons.prems sorted_sparse_row_vector_zero by blast + with v Cons show ?thesis + by (fastforce simp: Pair simp flip: Rep_matrix_inject) + qed +qed lemma sorted_spvec_minus_spvec: "sorted_spvec v \ sorted_spvec (minus_spvec v)" - apply (induct v) - apply (simp) - apply (frule sorted_spvec_cons1, simp) - apply (simp add: sorted_spvec.simps split:list.split_asm) - done + by (induct v rule: sorted_spvec.induct) (auto simp: sorted_spvec_step1 sorted_spvec_step) lemma sorted_spvec_abs_spvec: "sorted_spvec v \ sorted_spvec (abs_spvec v)" - apply (induct v) - apply (simp) - apply (frule sorted_spvec_cons1, simp) - apply (simp add: sorted_spvec.simps split:list.split_asm) - done + by (induct v rule: sorted_spvec.induct) (auto simp: sorted_spvec_step1 sorted_spvec_step) definition "smult_spvec y = map (% a. (fst a, y * snd a))" @@ -178,68 +169,65 @@ by (induct a) auto lemma addmult_spvec_empty2[simp]: "addmult_spvec y a [] = a" - by (induct a) auto + by simp lemma sparse_row_vector_map: "(\x y. f (x+y) = (f x) + (f y)) \ (f::'a\('a::lattice_ring)) 0 = 0 \ sparse_row_vector (map (% x. (fst x, f (snd x))) a) = apply_matrix f (sparse_row_vector a)" - apply (induct a) - apply (simp_all add: apply_matrix_add) - done + by (induct a) (simp_all add: apply_matrix_add) lemma sparse_row_vector_smult: "sparse_row_vector (smult_spvec y a) = scalar_mult y (sparse_row_vector a)" - apply (induct a) - apply (simp_all add: smult_spvec_cons scalar_mult_add) - done + by (induct a) (simp_all add: smult_spvec_cons scalar_mult_add) lemma sparse_row_vector_addmult_spvec: "sparse_row_vector (addmult_spvec (y::'a::lattice_ring) a b) = (sparse_row_vector a) + (scalar_mult y (sparse_row_vector b))" - apply (induct y a b rule: addmult_spvec.induct) - apply (simp add: scalar_mult_add smult_spvec_cons sparse_row_vector_smult singleton_matrix_add)+ - done + by (induct y a b rule: addmult_spvec.induct) + (simp_all add: scalar_mult_add smult_spvec_cons sparse_row_vector_smult singleton_matrix_add) lemma sorted_smult_spvec: "sorted_spvec a \ sorted_spvec (smult_spvec y a)" - apply (auto simp add: smult_spvec_def) - apply (induct a) - apply (auto simp add: sorted_spvec.simps split:list.split_asm) - done + by (induct a rule: sorted_spvec.induct) (auto simp: smult_spvec_def sorted_spvec_step1 sorted_spvec_step) lemma sorted_spvec_addmult_spvec_helper: "\sorted_spvec (addmult_spvec y ((a, b) # arr) brr); aa < a; sorted_spvec ((a, b) # arr); sorted_spvec ((aa, ba) # brr)\ \ sorted_spvec ((aa, y * ba) # addmult_spvec y ((a, b) # arr) brr)" - apply (induct brr) - apply (auto simp add: sorted_spvec.simps) - done + by (induct brr) (auto simp: sorted_spvec.simps) lemma sorted_spvec_addmult_spvec_helper2: "\sorted_spvec (addmult_spvec y arr ((aa, ba) # brr)); a < aa; sorted_spvec ((a, b) # arr); sorted_spvec ((aa, ba) # brr)\ \ sorted_spvec ((a, b) # addmult_spvec y arr ((aa, ba) # brr))" - apply (induct arr) - apply (auto simp add: smult_spvec_def sorted_spvec.simps) - done + by (induct arr) (auto simp: smult_spvec_def sorted_spvec.simps) lemma sorted_spvec_addmult_spvec_helper3[rule_format]: - "sorted_spvec (addmult_spvec y arr brr) \ sorted_spvec ((aa, b) # arr) \ sorted_spvec ((aa, ba) # brr) - \ sorted_spvec ((aa, b + y * ba) # (addmult_spvec y arr brr))" - apply (induct y arr brr rule: addmult_spvec.induct) - apply (simp_all add: sorted_spvec.simps smult_spvec_def split:list.split) - done + "sorted_spvec (addmult_spvec y arr brr) \ + sorted_spvec ((aa, b) # arr) \ + sorted_spvec ((aa, ba) # brr) \ + sorted_spvec ((aa, b + y * ba) # (addmult_spvec y arr brr))" + by (smt (verit, ccfv_threshold) sorted_spvec_step addmult_spvec.simps(1) list.distinct(1) list.sel(3) sorted_spvec.elims(1) sorted_spvec_addmult_spvec_helper2) lemma sorted_addmult_spvec: "sorted_spvec a \ sorted_spvec b \ sorted_spvec (addmult_spvec y a b)" - apply (induct y a b rule: addmult_spvec.induct) - apply (simp_all add: sorted_smult_spvec) - apply (rule conjI, intro strip) - apply (case_tac "~(i < j)") - apply (simp_all) - apply (frule_tac as=brr in sorted_spvec_cons1) - apply (simp add: sorted_spvec_addmult_spvec_helper) - apply (intro strip | rule conjI)+ - apply (frule_tac as=arr in sorted_spvec_cons1) - apply (simp add: sorted_spvec_addmult_spvec_helper2) - apply (intro strip) - apply (frule_tac as=arr in sorted_spvec_cons1) - apply (frule_tac as=brr in sorted_spvec_cons1) - apply (simp) - apply (simp_all add: sorted_spvec_addmult_spvec_helper3) - done +proof (induct y a b rule: addmult_spvec.induct) + case (1 y arr) + then show ?case + by simp +next + case (2 y v va) + then show ?case + by (simp add: sorted_smult_spvec) +next + case (3 y i a arr j b brr) + show ?case + proof (cases i j rule: linorder_cases) + case less + with 3 show ?thesis + by (simp add: sorted_spvec_addmult_spvec_helper2 sorted_spvec_cons1) + next + case equal + with 3 show ?thesis + by (simp add: sorted_spvec_addmult_spvec_helper3 sorted_spvec_cons1) + next + case greater + with 3 show ?thesis + by (simp add: sorted_spvec_addmult_spvec_helper sorted_spvec_cons1) + qed +qed fun mult_spvec_spmat :: "('a::lattice_ring) spvec \ 'a spvec \ 'a spmat \ 'a spvec" where @@ -250,100 +238,85 @@ else if (j < i) then mult_spvec_spmat c ((i,a)#arr) brr else mult_spvec_spmat (addmult_spvec a c b) arr brr)" -lemma sparse_row_mult_spvec_spmat[rule_format]: "sorted_spvec (a::('a::lattice_ring) spvec) \ sorted_spvec B \ - sparse_row_vector (mult_spvec_spmat c a B) = (sparse_row_vector c) + (sparse_row_vector a) * (sparse_row_matrix B)" +lemma sparse_row_mult_spvec_spmat: + assumes "sorted_spvec (a::('a::lattice_ring) spvec)" "sorted_spvec B" + shows "sparse_row_vector (mult_spvec_spmat c a B) = (sparse_row_vector c) + (sparse_row_vector a) * (sparse_row_matrix B)" proof - - have comp_1: "!! a b. a < b \ Suc 0 <= nat ((int b)-(int a))" by arith + have comp_1: "!! a b. a < b \ Suc 0 \ nat ((int b)-(int a))" by arith have not_iff: "!! a b. a = b \ (~ a) = (~ b)" by simp - have max_helper: "!! a b. ~ (a <= max (Suc a) b) \ False" - by arith { fix a - fix v - assume a:"a < nrows(sparse_row_vector v)" - have b:"nrows(sparse_row_vector v) <= 1" by simp - note dummy = less_le_trans[of a "nrows (sparse_row_vector v)" 1, OF a b] - then have "a = 0" by simp + fix v :: "(nat \ 'a) list" + assume a: "a < nrows(sparse_row_vector v)" + have "nrows(sparse_row_vector v) \ 1" by simp + then have "a = 0" + using a dual_order.strict_trans1 by blast } note nrows_helper = this show ?thesis - apply (induct c a B rule: mult_spvec_spmat.induct) - apply simp+ - apply (rule conjI) - apply (intro strip) - apply (frule_tac as=brr in sorted_spvec_cons1) - apply (simp add: algebra_simps sparse_row_matrix_cons) - apply (simplesubst Rep_matrix_zero_imp_mult_zero) - apply (simp) - apply (rule disjI2) - apply (intro strip) - apply (subst nrows) - apply (rule order_trans[of _ 1]) - apply (simp add: comp_1)+ - apply (subst Rep_matrix_zero_imp_mult_zero) - apply (intro strip) - apply (case_tac "k <= j") - apply (rule_tac m1 = k and n1 = i and a1 = a in ssubst[OF sorted_sparse_row_vector_zero]) - apply (simp_all) - apply (rule disjI2) - apply (rule nrows) - apply (rule order_trans[of _ 1]) - apply (simp_all add: comp_1) - - apply (intro strip | rule conjI)+ - apply (frule_tac as=arr in sorted_spvec_cons1) - apply (simp add: algebra_simps) - apply (subst Rep_matrix_zero_imp_mult_zero) - apply (simp) - apply (rule disjI2) - apply (intro strip) - apply (simp add: sparse_row_matrix_cons) - apply (case_tac "i <= j") - apply (erule sorted_sparse_row_matrix_zero) - apply (simp_all) - apply (intro strip) - apply (case_tac "i=j") - apply (simp_all) - apply (frule_tac as=arr in sorted_spvec_cons1) - apply (frule_tac as=brr in sorted_spvec_cons1) - apply (simp add: sparse_row_matrix_cons algebra_simps sparse_row_vector_addmult_spvec) - apply (rule_tac B1 = "sparse_row_matrix brr" in ssubst[OF Rep_matrix_zero_imp_mult_zero]) - apply (auto) - apply (rule sorted_sparse_row_matrix_zero) - apply (simp_all) - apply (rule_tac A1 = "sparse_row_vector arr" in ssubst[OF Rep_matrix_zero_imp_mult_zero]) - apply (auto) - apply (rule_tac m=k and n = j and a = a and arr=arr in sorted_sparse_row_vector_zero) - apply (simp_all) - apply (drule nrows_notzero) - apply (drule nrows_helper) - apply (arith) - - apply (subst Rep_matrix_inject[symmetric]) - apply (rule ext)+ - apply (simp) - apply (subst Rep_matrix_mult) - apply (rule_tac j1=j in ssubst[OF foldseq_almostzero]) - apply (simp_all) - apply (intro strip, rule conjI) - apply (intro strip) - apply (drule_tac max_helper) - apply (simp) - apply (auto) - apply (rule zero_imp_mult_zero) - apply (rule disjI2) - apply (rule nrows) - apply (rule order_trans[of _ 1]) - apply (simp) - apply (simp) - done + using assms + proof (induct c a B rule: mult_spvec_spmat.induct) + case (1 c brr) + then show ?case + by simp + next + case (2 c v va) + then show ?case + by simp + next + case (3 c i a arr j b brr) + then have abrr: "sorted_spvec arr" "sorted_spvec brr" + using sorted_spvec_cons1 by blast+ + have "\m n. \a \ 0; 0 < m\ + \ a * Rep_matrix (sparse_row_vector b) m n = 0" + by (metis mult_zero_right neq0_conv nrows_helper nrows_notzero) + then have \: "scalar_mult a (sparse_row_vector b) = + singleton_matrix 0 j a * move_matrix (sparse_row_vector b) (int j) 0" + apply (intro matrix_eqI) + apply (simp) + apply (subst Rep_matrix_mult) + apply (subst foldseq_almostzero, auto) + done + show ?case + proof (cases i j rule: linorder_cases) + case less + with 3 abrr \ show ?thesis + apply (simp add: algebra_simps sparse_row_matrix_cons Rep_matrix_zero_imp_mult_zero) + by (metis Rep_matrix_zero_imp_mult_zero Rep_singleton_matrix less_imp_le_nat sorted_sparse_row_matrix_zero) + next + case equal + with 3 abrr \ show ?thesis + apply (simp add: sparse_row_matrix_cons algebra_simps sparse_row_vector_addmult_spvec) + apply (subst Rep_matrix_zero_imp_mult_zero) + using sorted_sparse_row_matrix_zero apply fastforce + apply (subst Rep_matrix_zero_imp_mult_zero) + apply (metis Rep_move_matrix comp_1 nrows_le nrows_spvec sorted_sparse_row_vector_zero verit_comp_simplify1(3)) + apply (simp add: ) + done + next + case greater + have "Rep_matrix (sparse_row_vector arr) j' k = 0 \ + Rep_matrix (move_matrix (sparse_row_vector b) (int j) 0) k + i' = 0" + if "sorted_spvec ((i, a) # arr)" for j' i' k + proof (cases "k \ j") + case True + with greater that show ?thesis + by (meson order.trans nat_less_le sorted_sparse_row_vector_zero) + qed (use nrows_helper nrows_notzero in force) + then have "sparse_row_vector arr * move_matrix (sparse_row_vector b) (int j) 0 = 0" + using greater 3 + by (simp add: Rep_matrix_zero_imp_mult_zero) + with greater 3 abrr show ?thesis + apply (simp add: algebra_simps sparse_row_matrix_cons) + by (metis Rep_matrix_zero_imp_mult_zero Rep_move_matrix Rep_singleton_matrix comp_1 nrows_le nrows_spvec) + qed + qed qed -lemma sorted_mult_spvec_spmat[rule_format]: - "sorted_spvec (c::('a::lattice_ring) spvec) \ sorted_spmat B \ sorted_spvec (mult_spvec_spmat c a B)" - apply (induct c a B rule: mult_spvec_spmat.induct) - apply (simp_all add: sorted_addmult_spvec) - done +lemma sorted_mult_spvec_spmat: + "sorted_spvec (c::('a::lattice_ring) spvec) \ sorted_spmat B \ sorted_spvec (mult_spvec_spmat c a B)" + by (induct c a B rule: mult_spvec_spmat.induct) (simp_all add: sorted_addmult_spvec) primrec mult_spmat :: "('a::lattice_ring) spmat \ 'a spmat \ 'a spmat" where @@ -353,24 +326,16 @@ lemma sparse_row_mult_spmat: "sorted_spmat A \ sorted_spvec B \ sparse_row_matrix (mult_spmat A B) = (sparse_row_matrix A) * (sparse_row_matrix B)" - apply (induct A) - apply (auto simp add: sparse_row_matrix_cons sparse_row_mult_spvec_spmat algebra_simps move_matrix_mult) - done + by (induct A) (auto simp: sparse_row_matrix_cons sparse_row_mult_spvec_spmat algebra_simps move_matrix_mult) -lemma sorted_spvec_mult_spmat[rule_format]: - "sorted_spvec (A::('a::lattice_ring) spmat) \ sorted_spvec (mult_spmat A B)" - apply (induct A) - apply (auto) - apply (drule sorted_spvec_cons1, simp) - apply (case_tac A) - apply (auto simp add: sorted_spvec.simps) - done +lemma sorted_spvec_mult_spmat: + fixes A :: "('a::lattice_ring) spmat" + shows "sorted_spvec A \ sorted_spvec (mult_spmat A B)" +by (induct A rule: sorted_spvec.induct) (auto simp: sorted_spvec.simps) lemma sorted_spmat_mult_spmat: "sorted_spmat (B::('a::lattice_ring) spmat) \ sorted_spmat (mult_spmat A B)" - apply (induct A) - apply (auto simp add: sorted_mult_spvec_spmat) - done + by (induct A) (auto simp: sorted_mult_spvec_spmat) fun add_spvec :: "('a::lattice_ab_group_add) spvec \ 'a spvec \ 'a spvec" @@ -384,12 +349,10 @@ else (i, a+b) # add_spvec arr brr)" lemma add_spvec_empty1[simp]: "add_spvec [] a = a" -by (cases a, auto) + by (cases a, auto) lemma sparse_row_vector_add: "sparse_row_vector (add_spvec a b) = (sparse_row_vector a) + (sparse_row_vector b)" - apply (induct a b rule: add_spvec.induct) - apply (simp_all add: singleton_matrix_add) - done + by (induct a b rule: add_spvec.induct) (simp_all add: singleton_matrix_add) fun add_spmat :: "('a::lattice_ab_group_add) spmat \ 'a spmat \ 'a spmat" where @@ -408,127 +371,67 @@ by(cases as) auto lemma sparse_row_add_spmat: "sparse_row_matrix (add_spmat A B) = (sparse_row_matrix A) + (sparse_row_matrix B)" - apply (induct A B rule: add_spmat.induct) - apply (auto simp add: sparse_row_matrix_cons sparse_row_vector_add move_matrix_add) - done + by (induct A B rule: add_spmat.induct) (auto simp: sparse_row_matrix_cons sparse_row_vector_add move_matrix_add) lemmas [code] = sparse_row_add_spmat [symmetric] lemmas [code] = sparse_row_vector_add [symmetric] lemma sorted_add_spvec_helper1[rule_format]: "add_spvec ((a,b)#arr) brr = (ab, bb) # list \ (ab = a | (brr \ [] & ab = fst (hd brr)))" - proof - - have "(\x ab a. x = (a,b)#arr \ add_spvec x brr = (ab, bb) # list \ (ab = a | (ab = fst (hd brr))))" - by (induct brr rule: add_spvec.induct) (auto split:if_splits) - then show ?thesis - by (case_tac brr, auto) - qed +proof - + have "(\x ab a. x = (a,b)#arr \ add_spvec x brr = (ab, bb) # list \ (ab = a | (ab = fst (hd brr))))" + by (induct brr rule: add_spvec.induct) (auto split:if_splits) + then show ?thesis + by (case_tac brr, auto) +qed -lemma sorted_add_spmat_helper1[rule_format]: "add_spmat ((a,b)#arr) brr = (ab, bb) # list \ (ab = a | (brr \ [] & ab = fst (hd brr)))" - proof - - have "(\x ab a. x = (a,b)#arr \ add_spmat x brr = (ab, bb) # list \ (ab = a | (ab = fst (hd brr))))" - by (rule add_spmat.induct) (auto split:if_splits) - then show ?thesis - by (case_tac brr, auto) - qed +lemma sorted_add_spmat_helper1[rule_format]: + "add_spmat ((a,b)#arr) brr = (ab, bb) # list \ (ab = a | (brr \ [] & ab = fst (hd brr)))" + by (smt (verit) add_spmat.elims fst_conv list.distinct(1) list.sel(1)) lemma sorted_add_spvec_helper: "add_spvec arr brr = (ab, bb) # list \ ((arr \ [] & ab = fst (hd arr)) | (brr \ [] & ab = fst (hd brr)))" - apply (induct arr brr rule: add_spvec.induct) - apply (auto split:if_splits) - done + by (induct arr brr rule: add_spvec.induct) (auto split:if_splits) lemma sorted_add_spmat_helper: "add_spmat arr brr = (ab, bb) # list \ ((arr \ [] & ab = fst (hd arr)) | (brr \ [] & ab = fst (hd brr)))" - apply (induct arr brr rule: add_spmat.induct) - apply (auto split:if_splits) - done + by (induct arr brr rule: add_spmat.induct) (auto split:if_splits) lemma add_spvec_commute: "add_spvec a b = add_spvec b a" by (induct a b rule: add_spvec.induct) auto lemma add_spmat_commute: "add_spmat a b = add_spmat b a" - apply (induct a b rule: add_spmat.induct) - apply (simp_all add: add_spvec_commute) - done + by (induct a b rule: add_spmat.induct) (simp_all add: add_spvec_commute) lemma sorted_add_spvec_helper2: "add_spvec ((a,b)#arr) brr = (ab, bb) # list \ aa < a \ sorted_spvec ((aa, ba) # brr) \ aa < ab" - apply (drule sorted_add_spvec_helper1) - apply (auto) - apply (case_tac brr) - apply (simp_all) - apply (drule_tac sorted_spvec_cons3) - apply (simp) - done + by (smt (verit, best) add_spvec.elims fst_conv list.sel(1) sorted_spvec_cons3) lemma sorted_add_spmat_helper2: "add_spmat ((a,b)#arr) brr = (ab, bb) # list \ aa < a \ sorted_spvec ((aa, ba) # brr) \ aa < ab" - apply (drule sorted_add_spmat_helper1) - apply (auto) - apply (case_tac brr) - apply (simp_all) - apply (drule_tac sorted_spvec_cons3) - apply (simp) - done + by (metis (no_types, opaque_lifting) add_spmat.simps(1) list.sel(1) neq_Nil_conv sorted_add_spmat_helper sorted_spvec_cons3) + +lemma sorted_spvec_add_spvec: "sorted_spvec a \ sorted_spvec b \ sorted_spvec (add_spvec a b)" +proof (induct a b rule: add_spvec.induct) + case (3 i a arr j b brr) + then have "sorted_spvec arr" "sorted_spvec brr" + using sorted_spvec_cons1 by blast+ + with 3 show ?case + apply simp + by (smt (verit, ccfv_SIG) add_spvec.simps(2) list.sel(3) sorted_add_spvec_helper sorted_spvec.elims(1)) +qed auto -lemma sorted_spvec_add_spvec[rule_format]: "sorted_spvec a \ sorted_spvec b \ sorted_spvec (add_spvec a b)" - apply (induct a b rule: add_spvec.induct) - apply (simp_all) - apply (rule conjI) - apply (clarsimp) - apply (frule_tac as=brr in sorted_spvec_cons1) - apply (simp) - apply (subst sorted_spvec_step) - apply (clarsimp simp: sorted_add_spvec_helper2 split: list.split) - apply (clarify) - apply (rule conjI) - apply (clarify) - apply (frule_tac as=arr in sorted_spvec_cons1, simp) - apply (subst sorted_spvec_step) - apply (clarsimp simp: sorted_add_spvec_helper2 add_spvec_commute split: list.split) - apply (clarify) - apply (frule_tac as=arr in sorted_spvec_cons1) - apply (frule_tac as=brr in sorted_spvec_cons1) - apply (simp) - apply (subst sorted_spvec_step) - apply (simp split: list.split) - apply (clarsimp) - apply (drule_tac sorted_add_spvec_helper) - apply (auto simp: neq_Nil_conv) - apply (drule sorted_spvec_cons3) - apply (simp) - apply (drule sorted_spvec_cons3) - apply (simp) - done - -lemma sorted_spvec_add_spmat[rule_format]: "sorted_spvec A \ sorted_spvec B \ sorted_spvec (add_spmat A B)" - apply (induct A B rule: add_spmat.induct) - apply (simp_all) - apply (rule conjI) - apply (intro strip) - apply (simp) - apply (frule_tac as=bs in sorted_spvec_cons1) - apply (simp) - apply (subst sorted_spvec_step) - apply (simp split: list.split) - apply (clarify, simp) - apply (simp add: sorted_add_spmat_helper2) - apply (clarify) - apply (rule conjI) - apply (clarify) - apply (frule_tac as=as in sorted_spvec_cons1, simp) - apply (subst sorted_spvec_step) - apply (clarsimp simp: sorted_add_spmat_helper2 add_spmat_commute split: list.split) - apply (clarsimp) - apply (frule_tac as=as in sorted_spvec_cons1) - apply (frule_tac as=bs in sorted_spvec_cons1) - apply (simp) - apply (subst sorted_spvec_step) - apply (simp split: list.split) - apply (clarify, simp) - apply (drule_tac sorted_add_spmat_helper) - apply (auto simp:neq_Nil_conv) - apply (drule sorted_spvec_cons3) - apply (simp) - apply (drule sorted_spvec_cons3) - apply (simp) - done +lemma sorted_spvec_add_spmat: + "sorted_spvec A \ sorted_spvec B \ sorted_spvec (add_spmat A B)" +proof (induct A B rule: add_spmat.induct) + case (1 bs) + then show ?case by auto +next + case (2 v va) + then show ?case by auto +next + case (3 i a as j b bs) + then have "sorted_spvec as" "sorted_spvec bs" + using sorted_spvec_cons1 by blast+ + with 3 show ?case + apply simp + by (smt (verit) Pair_inject add_spmat.elims list.discI list.inject sorted_spvec.elims(1)) +qed lemma sorted_spmat_add_spmat[rule_format]: "sorted_spmat A \ sorted_spmat B \ sorted_spmat (add_spmat A B)" apply (induct A B rule: add_spmat.induct) @@ -539,12 +442,12 @@ where (* "measure (% (a,b). (length a) + (length b))" *) "le_spvec [] [] = True" -| "le_spvec ((_,a)#as) [] = (a <= 0 & le_spvec as [])" -| "le_spvec [] ((_,b)#bs) = (0 <= b & le_spvec [] bs)" +| "le_spvec ((_,a)#as) [] = (a \ 0 & le_spvec as [])" +| "le_spvec [] ((_,b)#bs) = (0 \ b & le_spvec [] bs)" | "le_spvec ((i,a)#as) ((j,b)#bs) = ( - if (i < j) then a <= 0 & le_spvec as ((j,b)#bs) - else if (j < i) then 0 <= b & le_spvec ((i,a)#as) bs - else a <= b & le_spvec as bs)" + if (i < j) then a \ 0 & le_spvec as ((j,b)#bs) + else if (j < i) then 0 \ b & le_spvec ((i,a)#as) bs + else a \ b & le_spvec as bs)" fun le_spmat :: "('a::lattice_ab_group_add) spmat \ 'a spmat \ bool" where @@ -571,7 +474,7 @@ lemma disj_matrices_add: "disj_matrices A B \ disj_matrices C D \ disj_matrices A D \ disj_matrices B C \ - (A + B <= C + D) = (A <= C & B <= (D::('a::lattice_ab_group_add) matrix))" + (A + B \ C + D) = (A \ C & B \ (D::('a::lattice_ab_group_add) matrix))" apply (auto) apply (simp (no_asm_use) only: le_matrix_def disj_matrices_def) apply (intro strip) @@ -598,25 +501,25 @@ by (simp add: disj_matrices_def) lemma disj_matrices_commute: "disj_matrices A B = disj_matrices B A" -by (auto simp add: disj_matrices_def) +by (auto simp: disj_matrices_def) lemma disj_matrices_add_le_zero: "disj_matrices A B \ - (A + B <= 0) = (A <= 0 & (B::('a::lattice_ab_group_add) matrix) <= 0)" + (A + B \ 0) = (A \ 0 & (B::('a::lattice_ab_group_add) matrix) \ 0)" by (rule disj_matrices_add[of A B 0 0, simplified]) lemma disj_matrices_add_zero_le: "disj_matrices A B \ - (0 <= A + B) = (0 <= A & 0 <= (B::('a::lattice_ab_group_add) matrix))" + (0 \ A + B) = (0 \ A & 0 \ (B::('a::lattice_ab_group_add) matrix))" by (rule disj_matrices_add[of 0 0 A B, simplified]) lemma disj_matrices_add_x_le: "disj_matrices A B \ disj_matrices B C \ - (A <= B + C) = (A <= C & 0 <= (B::('a::lattice_ab_group_add) matrix))" -by (auto simp add: disj_matrices_add[of 0 A B C, simplified]) + (A \ B + C) = (A \ C & 0 \ (B::('a::lattice_ab_group_add) matrix))" +by (auto simp: disj_matrices_add[of 0 A B C, simplified]) lemma disj_matrices_add_le_x: "disj_matrices A B \ disj_matrices B C \ - (B + A <= C) = (A <= C & (B::('a::lattice_ab_group_add) matrix) <= 0)" -by (auto simp add: disj_matrices_add[of B A 0 C,simplified] disj_matrices_commute) + (B + A \ C) = (A \ C & (B::('a::lattice_ab_group_add) matrix) \ 0)" +by (auto simp: disj_matrices_add[of B A 0 C,simplified] disj_matrices_commute) -lemma disj_sparse_row_singleton: "i <= j \ sorted_spvec((j,y)#v) \ disj_matrices (sparse_row_vector v) (singleton_matrix 0 i x)" +lemma disj_sparse_row_singleton: "i \ j \ sorted_spvec((j,y)#v) \ disj_matrices (sparse_row_vector v) (singleton_matrix 0 i x)" apply (simp add: disj_matrices_def) apply (rule conjI) apply (rule neg_imp) @@ -642,11 +545,11 @@ by (simp add: disj_matrices_x_add disj_matrices_commute) lemma disj_singleton_matrices[simp]: "disj_matrices (singleton_matrix j i x) (singleton_matrix u v y) = (j \ u | i \ v | x = 0 | y = 0)" - by (auto simp add: disj_matrices_def) + by (auto simp: disj_matrices_def) lemma disj_move_sparse_vec_mat[simplified disj_matrices_commute]: - "j <= a \ sorted_spvec((a,c)#as) \ disj_matrices (move_matrix (sparse_row_vector b) (int j) i) (sparse_row_matrix as)" - apply (auto simp add: disj_matrices_def) + "j \ a \ sorted_spvec((a,c)#as) \ disj_matrices (move_matrix (sparse_row_vector b) (int j) i) (sparse_row_matrix as)" + apply (auto simp: disj_matrices_def) apply (drule nrows_notzero) apply (drule less_le_trans[OF _ nrows_spvec]) apply (subgoal_tac "ja = j") @@ -663,11 +566,11 @@ lemma disj_move_sparse_row_vector_twice: "j \ u \ disj_matrices (move_matrix (sparse_row_vector a) j i) (move_matrix (sparse_row_vector b) u v)" - apply (auto simp add: disj_matrices_def) + apply (auto simp: disj_matrices_def) apply (rule nrows, rule order_trans[of _ 1], simp, drule nrows_notzero, drule less_le_trans[OF _ nrows_spvec], arith)+ done -lemma le_spvec_iff_sparse_row_le[rule_format]: "(sorted_spvec a) \ (sorted_spvec b) \ (le_spvec a b) = (sparse_row_vector a <= sparse_row_vector b)" +lemma le_spvec_iff_sparse_row_le[rule_format]: "(sorted_spvec a) \ (sorted_spvec b) \ (le_spvec a b) = (sparse_row_vector a \ sparse_row_vector b)" apply (induct a b rule: le_spvec.induct) apply (simp_all add: sorted_spvec_cons1 disj_matrices_add_le_zero disj_matrices_add_zero_le disj_sparse_row_singleton[OF order_refl] disj_matrices_commute) @@ -689,24 +592,24 @@ apply (simp_all add: disj_sparse_row_singleton[OF order_refl] disj_matrices_commute) done -lemma le_spvec_empty2_sparse_row[rule_format]: "sorted_spvec b \ le_spvec b [] = (sparse_row_vector b <= 0)" +lemma le_spvec_empty2_sparse_row[rule_format]: "sorted_spvec b \ le_spvec b [] = (sparse_row_vector b \ 0)" apply (induct b) apply (simp_all add: sorted_spvec_cons1) apply (intro strip) apply (subst disj_matrices_add_le_zero) - apply (auto simp add: disj_matrices_commute disj_sparse_row_singleton[OF order_refl] sorted_spvec_cons1) + apply (auto simp: disj_matrices_commute disj_sparse_row_singleton[OF order_refl] sorted_spvec_cons1) done -lemma le_spvec_empty1_sparse_row[rule_format]: "(sorted_spvec b) \ (le_spvec [] b = (0 <= sparse_row_vector b))" +lemma le_spvec_empty1_sparse_row[rule_format]: "(sorted_spvec b) \ (le_spvec [] b = (0 \ sparse_row_vector b))" apply (induct b) apply (simp_all add: sorted_spvec_cons1) apply (intro strip) apply (subst disj_matrices_add_zero_le) - apply (auto simp add: disj_matrices_commute disj_sparse_row_singleton[OF order_refl] sorted_spvec_cons1) + apply (auto simp: disj_matrices_commute disj_sparse_row_singleton[OF order_refl] sorted_spvec_cons1) done lemma le_spmat_iff_sparse_row_le[rule_format]: "(sorted_spvec A) \ (sorted_spmat A) \ (sorted_spvec B) \ (sorted_spmat B) \ - le_spmat A B = (sparse_row_matrix A <= sparse_row_matrix B)" + le_spmat A B = (sparse_row_matrix A \ sparse_row_matrix B)" apply (induct A B rule: le_spmat.induct) apply (simp add: sparse_row_matrix_cons disj_matrices_add_le_zero disj_matrices_add_zero_le disj_move_sparse_vec_mat[OF order_refl] disj_matrices_commute sorted_spvec_cons1 le_spvec_empty2_sparse_row le_spvec_empty1_sparse_row)+ @@ -748,66 +651,58 @@ lemma sparse_row_matrix_minus: "sparse_row_matrix (minus_spmat A) = - (sparse_row_matrix A)" - apply (induct A) - apply (simp_all add: sparse_row_vector_minus sparse_row_matrix_cons) - apply (subst Rep_matrix_inject[symmetric]) - apply (rule ext)+ - apply simp - done +proof (induct A) + case Nil + then show ?case by auto +next + case (Cons a A) + then show ?case + by (simp add: sparse_row_vector_minus sparse_row_matrix_cons matrix_eqI) +qed -lemma Rep_sparse_row_vector_zero: "x \ 0 \ Rep_matrix (sparse_row_vector v) x y = 0" -proof - - assume x:"x \ 0" - have r:"nrows (sparse_row_vector v) <= Suc 0" by (rule nrows_spvec) - show ?thesis - apply (rule nrows) - apply (subgoal_tac "Suc 0 <= x") - apply (insert r) - apply (simp only:) - apply (insert x) - apply arith - done -qed +lemma Rep_sparse_row_vector_zero: + assumes "x \ 0" + shows "Rep_matrix (sparse_row_vector v) x y = 0" + by (metis Suc_leI assms le0 le_eq_less_or_eq nrows_le nrows_spvec) lemma sparse_row_matrix_abs: "sorted_spvec A \ sorted_spmat A \ sparse_row_matrix (abs_spmat A) = \sparse_row_matrix A\" - apply (induct A) - apply (simp_all add: sparse_row_vector_abs sparse_row_matrix_cons) - apply (frule_tac sorted_spvec_cons1, simp) - apply (simplesubst Rep_matrix_inject[symmetric]) - apply (rule ext)+ - apply auto - apply (case_tac "x=a") - apply (simp) - apply (simplesubst sorted_sparse_row_matrix_zero) - apply auto - apply (simplesubst Rep_sparse_row_vector_zero) - apply simp_all - done +proof (induct A) + case Nil + then show ?case by auto +next + case (Cons ab A) + then have A: "sorted_spvec A" + using sorted_spvec_cons1 by blast + show ?case + proof (cases ab) + case (Pair a b) + show ?thesis + unfolding Pair + proof (intro matrix_eqI) + fix m n + show "Rep_matrix (sparse_row_matrix (abs_spmat ((a,b) # A))) m n + = Rep_matrix \sparse_row_matrix ((a,b) # A)\ m n" + using Cons Pair A + apply (simp add: sparse_row_vector_abs sparse_row_matrix_cons) + apply (cases "m=a") + using sorted_sparse_row_matrix_zero apply fastforce + by (simp add: Rep_sparse_row_vector_zero) + qed + qed +qed lemma sorted_spvec_minus_spmat: "sorted_spvec A \ sorted_spvec (minus_spmat A)" - apply (induct A) - apply (simp) - apply (frule sorted_spvec_cons1, simp) - apply (simp add: sorted_spvec.simps split:list.split_asm) - done +by (induct A rule: sorted_spvec.induct) (auto simp: sorted_spvec.simps) lemma sorted_spvec_abs_spmat: "sorted_spvec A \ sorted_spvec (abs_spmat A)" - apply (induct A) - apply (simp) - apply (frule sorted_spvec_cons1, simp) - apply (simp add: sorted_spvec.simps split:list.split_asm) - done + by (induct A rule: sorted_spvec.induct) (auto simp: sorted_spvec.simps) lemma sorted_spmat_minus_spmat: "sorted_spmat A \ sorted_spmat (minus_spmat A)" - apply (induct A) - apply (simp_all add: sorted_spvec_minus_spvec) - done + by (induct A) (simp_all add: sorted_spvec_minus_spvec) lemma sorted_spmat_abs_spmat: "sorted_spmat A \ sorted_spmat (abs_spmat A)" - apply (induct A) - apply (simp_all add: sorted_spvec_abs_spvec) - done + by (induct A) (simp_all add: sorted_spvec_abs_spvec) definition diff_spmat :: "('a::lattice_ring) spmat \ 'a spmat \ 'a spmat" where "diff_spmat A B = add_spmat A (minus_spmat B)" @@ -872,148 +767,120 @@ lemma pprt_add: "disj_matrices A (B::(_::lattice_ring) matrix) \ pprt (A+B) = pprt A + pprt B" apply (simp add: pprt_def sup_matrix_def) - apply (simp add: Rep_matrix_inject[symmetric]) - apply (rule ext)+ - apply simp - apply (case_tac "Rep_matrix A x xa \ 0") - apply (simp_all add: disj_matrices_contr1) - done + apply (intro matrix_eqI) + by (smt (verit, del_insts) Rep_combine_matrix Rep_zero_matrix_def add.commute comm_monoid_add_class.add_0 disj_matrices_def plus_matrix_def sup.idem) lemma nprt_add: "disj_matrices A (B::(_::lattice_ring) matrix) \ nprt (A+B) = nprt A + nprt B" - apply (simp add: nprt_def inf_matrix_def) - apply (simp add: Rep_matrix_inject[symmetric]) - apply (rule ext)+ - apply simp - apply (case_tac "Rep_matrix A x xa \ 0") - apply (simp_all add: disj_matrices_contr1) - done + unfolding nprt_def inf_matrix_def + apply (intro matrix_eqI) + by (smt (verit, ccfv_threshold) Rep_combine_matrix Rep_matrix_add add.commute add_cancel_right_right add_eq_inf_sup disj_matrices_contr2 sup.idem) -lemma pprt_singleton[simp]: "pprt (singleton_matrix j i (x::_::lattice_ring)) = singleton_matrix j i (pprt x)" - apply (simp add: pprt_def sup_matrix_def) - apply (simp add: Rep_matrix_inject[symmetric]) - apply (rule ext)+ - apply simp - done +lemma pprt_singleton[simp]: + fixes x:: "_::lattice_ring" + shows "pprt (singleton_matrix j i x) = singleton_matrix j i (pprt x)" + unfolding pprt_def sup_matrix_def + by (simp add: matrix_eqI) -lemma nprt_singleton[simp]: "nprt (singleton_matrix j i (x::_::lattice_ring)) = singleton_matrix j i (nprt x)" - apply (simp add: nprt_def inf_matrix_def) - apply (simp add: Rep_matrix_inject[symmetric]) - apply (rule ext)+ - apply simp - done +lemma nprt_singleton[simp]: + fixes x:: "_::lattice_ring" + shows "nprt (singleton_matrix j i x) = singleton_matrix j i (nprt x)" + by (metis add_left_imp_eq pprt_singleton prts singleton_matrix_add) -lemma less_imp_le: "a < b \ a <= (b::_::order)" by (simp add: less_def) +lemma sparse_row_vector_pprt: + fixes v:: "_::lattice_ring spvec" + shows "sorted_spvec v \ sparse_row_vector (pprt_spvec v) = pprt (sparse_row_vector v)" +proof (induct v rule: sorted_spvec.induct) + case (3 m x n y bs) + then show ?case + apply (simp add: ) + apply (subst pprt_add) + apply (metis disj_matrices_commute disj_sparse_row_singleton order.refl fst_conv prod.sel(2) sparse_row_vector_cons) + by (metis pprt_singleton sorted_spvec_cons1) +qed auto -lemma sparse_row_vector_pprt: "sorted_spvec (v :: 'a::lattice_ring spvec) \ sparse_row_vector (pprt_spvec v) = pprt (sparse_row_vector v)" - apply (induct v) - apply (simp_all) - apply (frule sorted_spvec_cons1, auto) - apply (subst pprt_add) - apply (subst disj_matrices_commute) - apply (rule disj_sparse_row_singleton) - apply auto - done - -lemma sparse_row_vector_nprt: "sorted_spvec (v :: 'a::lattice_ring spvec) \ sparse_row_vector (nprt_spvec v) = nprt (sparse_row_vector v)" - apply (induct v) - apply (simp_all) - apply (frule sorted_spvec_cons1, auto) - apply (subst nprt_add) - apply (subst disj_matrices_commute) - apply (rule disj_sparse_row_singleton) - apply auto - done +lemma sparse_row_vector_nprt: + fixes v:: "_::lattice_ring spvec" + shows "sorted_spvec v \ sparse_row_vector (nprt_spvec v) = nprt (sparse_row_vector v)" +proof (induct v rule: sorted_spvec.induct) + case (3 m x n y bs) + then show ?case + apply (simp add: ) + apply (subst nprt_add) + apply (metis disj_matrices_commute disj_sparse_row_singleton dual_order.refl fst_conv prod.sel(2) sparse_row_vector_cons) + using sorted_spvec_cons1 by force +qed auto lemma pprt_move_matrix: "pprt (move_matrix (A::('a::lattice_ring) matrix) j i) = move_matrix (pprt A) j i" - apply (simp add: pprt_def) - apply (simp add: sup_matrix_def) - apply (simp add: Rep_matrix_inject[symmetric]) - apply (rule ext)+ - apply (simp) - done + by (simp add: pprt_def sup_matrix_def matrix_eqI) lemma nprt_move_matrix: "nprt (move_matrix (A::('a::lattice_ring) matrix) j i) = move_matrix (nprt A) j i" - apply (simp add: nprt_def) - apply (simp add: inf_matrix_def) - apply (simp add: Rep_matrix_inject[symmetric]) - apply (rule ext)+ - apply (simp) - done + by (simp add: nprt_def inf_matrix_def matrix_eqI) -lemma sparse_row_matrix_pprt: "sorted_spvec (m :: 'a::lattice_ring spmat) \ sorted_spmat m \ sparse_row_matrix (pprt_spmat m) = pprt (sparse_row_matrix m)" - apply (induct m) - apply simp - apply simp - apply (frule sorted_spvec_cons1) - apply (simp add: sparse_row_matrix_cons sparse_row_vector_pprt) - apply (subst pprt_add) - apply (subst disj_matrices_commute) - apply (rule disj_move_sparse_vec_mat) - apply auto - apply (simp add: sorted_spvec.simps) - apply (simp split: list.split) - apply auto - apply (simp add: pprt_move_matrix) - done +lemma sparse_row_matrix_pprt: + fixes m:: "'a::lattice_ring spmat" + shows "sorted_spvec m \ sorted_spmat m \ sparse_row_matrix (pprt_spmat m) = pprt (sparse_row_matrix m)" +proof (induct m rule: sorted_spvec.induct) + case (2 a) + then show ?case + by (simp add: pprt_move_matrix sparse_row_matrix_cons sparse_row_vector_pprt) +next + case (3 m x n y bs) + then show ?case + apply (simp add: sparse_row_matrix_cons sparse_row_vector_pprt) + apply (subst pprt_add) + apply (subst disj_matrices_commute) + apply (metis disj_move_sparse_vec_mat eq_imp_le fst_conv prod.sel(2) sparse_row_matrix_cons) + apply (simp add: sorted_spvec.simps pprt_move_matrix) + done +qed auto -lemma sparse_row_matrix_nprt: "sorted_spvec (m :: 'a::lattice_ring spmat) \ sorted_spmat m \ sparse_row_matrix (nprt_spmat m) = nprt (sparse_row_matrix m)" - apply (induct m) - apply simp - apply simp - apply (frule sorted_spvec_cons1) - apply (simp add: sparse_row_matrix_cons sparse_row_vector_nprt) - apply (subst nprt_add) - apply (subst disj_matrices_commute) - apply (rule disj_move_sparse_vec_mat) - apply auto - apply (simp add: sorted_spvec.simps) - apply (simp split: list.split) - apply auto - apply (simp add: nprt_move_matrix) - done +lemma sparse_row_matrix_nprt: + fixes m:: "'a::lattice_ring spmat" + shows "sorted_spvec m \ sorted_spmat m \ sorted_spmat m \ sparse_row_matrix (nprt_spmat m) = nprt (sparse_row_matrix m)" +proof (induct m rule: sorted_spvec.induct) + case (2 a) + then show ?case + by (simp add: nprt_move_matrix sparse_row_matrix_cons sparse_row_vector_nprt) +next + case (3 m x n y bs) + then show ?case + apply (simp add: sparse_row_matrix_cons sparse_row_vector_nprt) + apply (subst nprt_add) + apply (subst disj_matrices_commute) + apply (metis disj_move_sparse_vec_mat fst_conv nle_le prod.sel(2) sparse_row_matrix_cons) + apply (simp add: sorted_spvec.simps nprt_move_matrix) + done +qed auto lemma sorted_pprt_spvec: "sorted_spvec v \ sorted_spvec (pprt_spvec v)" - apply (induct v) - apply (simp) - apply (frule sorted_spvec_cons1) - apply simp - apply (simp add: sorted_spvec.simps split:list.split_asm) - done +proof (induct v rule: sorted_spvec.induct) + case 1 + then show ?case by auto +next + case (2 a) + then show ?case + by (simp add: sorted_spvec_step1) +next + case (3 m x n y bs) + then show ?case + by (simp add: sorted_spvec_step) +qed lemma sorted_nprt_spvec: "sorted_spvec v \ sorted_spvec (nprt_spvec v)" - apply (induct v) - apply (simp) - apply (frule sorted_spvec_cons1) - apply simp - apply (simp add: sorted_spvec.simps split:list.split_asm) - done +by (induct v rule: sorted_spvec.induct) (simp_all add: sorted_spvec.simps split:list.split_asm) lemma sorted_spvec_pprt_spmat: "sorted_spvec m \ sorted_spvec (pprt_spmat m)" - apply (induct m) - apply (simp) - apply (frule sorted_spvec_cons1) - apply simp - apply (simp add: sorted_spvec.simps split:list.split_asm) - done +by (induct m rule: sorted_spvec.induct) (simp_all add: sorted_spvec.simps split:list.split_asm) lemma sorted_spvec_nprt_spmat: "sorted_spvec m \ sorted_spvec (nprt_spmat m)" - apply (induct m) - apply (simp) - apply (frule sorted_spvec_cons1) - apply simp - apply (simp add: sorted_spvec.simps split:list.split_asm) - done +by (induct m rule: sorted_spvec.induct) (simp_all add: sorted_spvec.simps split:list.split_asm) lemma sorted_spmat_pprt_spmat: "sorted_spmat m \ sorted_spmat (pprt_spmat m)" - apply (induct m) - apply (simp_all add: sorted_pprt_spvec) - done + by (induct m) (simp_all add: sorted_pprt_spvec) lemma sorted_spmat_nprt_spmat: "sorted_spmat m \ sorted_spmat (nprt_spmat m)" - apply (induct m) - apply (simp_all add: sorted_nprt_spvec) - done + by (induct m) (simp_all add: sorted_nprt_spvec) definition mult_est_spmat :: "('a::lattice_ring) spmat \ 'a spmat \ 'a spmat \ 'a spmat \ 'a spmat" where "mult_est_spmat r1 r2 s1 s2 = @@ -1056,10 +923,10 @@ "sorted_spvec r" "le_spmat ([], y)" "A * x \ sparse_row_matrix (b::('a::lattice_ring) spmat)" - "sparse_row_matrix A1 <= A" - "A <= sparse_row_matrix A2" - "sparse_row_matrix c1 <= c" - "c <= sparse_row_matrix c2" + "sparse_row_matrix A1 \ A" + "A \ sparse_row_matrix A2" + "sparse_row_matrix c1 \ c" + "c \ sparse_row_matrix c2" "\x\ \ sparse_row_matrix r" shows "c * x \ sparse_row_matrix (add_spmat (mult_spmat y b, mult_spmat (add_spmat (add_spmat (mult_spmat y (diff_spmat A2 A1),