diff -r 4005298550a6 -r c8deb8ba6d05 src/HOL/Computational_Algebra/Formal_Power_Series.thy --- a/src/HOL/Computational_Algebra/Formal_Power_Series.thy Wed Apr 10 13:34:55 2019 +0100 +++ b/src/HOL/Computational_Algebra/Formal_Power_Series.thy Wed Apr 10 21:29:32 2019 +0100 @@ -1125,7 +1125,7 @@ using sum.atLeast_Suc_atMost[of 0 "n+1" "\i. a$i * b$(n+1-i)"] by (simp add: fps_mult_nth nth_less_subdegree_zero) thus "fps_shift 1 (a*b) $ n = (fps_shift 1 a * b) $ n" - using sum_shift_bounds_cl_Suc_ivl[of "\i. a$i * b$(n+1-i)" 0 n] + using sum.shift_bounds_cl_Suc_ivl[of "\i. a$i * b$(n+1-i)" 0 n] by (simp add: fps_mult_nth) qed have "n \ subdegree g \ fps_shift n (g*h) = fps_shift n g * h" @@ -2220,7 +2220,7 @@ "fps_left_inverse (f^2) 1 $ Suc (Suc (Suc k)) = fps_left_inverse (f\<^sup>2) 1 $ Suc (Suc k) * of_nat 2 - fps_left_inverse (f\<^sup>2) 1 $ Suc k" - using sum_ub_add_nat f2_nth_simps(1,2) by simp + using sum.ub_add_nat f2_nth_simps(1,2) by simp also have "\ = of_nat (2 * Suc (Suc (Suc k))) - of_nat (Suc (Suc k))" by (subst A, subst B) (simp add: invf2_def mult.commute) also have "\ = of_nat (Suc (Suc (Suc k)) + 1)" @@ -4136,7 +4136,7 @@ from v have "k = sum_list v" by (simp add: A_def natpermute_def) also have "\ = (\i=0..m. v ! i)" - by (simp add: sum_list_sum_nth atLeastLessThanSuc_atLeastAtMost del: sum_op_ivl_Suc) + by (simp add: sum_list_sum_nth atLeastLessThanSuc_atLeastAtMost del: sum.op_ivl_Suc) also from j have "{0..m} = insert j ({0..m}-{j})" by auto also from j have "(\i\\. v ! i) = k + (\i\{0..m}-{j}. v ! i)" by (subst sum.insert) simp_all @@ -5927,10 +5927,10 @@ done have th20: "?m1 n * ?p b n = prod (\i. b - of_nat i) {0..m}" apply (simp add: pochhammer_minus field_simps m) - apply (auto simp add: pochhammer_prod_rev of_nat_diff prod.atLeast_Suc_atMost_Suc_shift) + apply (auto simp add: pochhammer_prod_rev of_nat_diff prod.atLeast_Suc_atMost_Suc_shift simp del: prod.cl_ivl_Suc) done have th21:"pochhammer (b - of_nat n + 1) k = prod (\i. b - of_nat i) {n - k .. n - 1}" - using kn apply (simp add: pochhammer_prod_rev m h prod.atLeast_Suc_atMost_Suc_shift) + using kn apply (simp add: pochhammer_prod_rev m h prod.atLeast_Suc_atMost_Suc_shift del: prod.op_ivl_Suc del: prod.cl_ivl_Suc) using prod.atLeastAtMost_shift_0 [of "m - h" m, where ?'a = 'a] apply (auto simp add: of_nat_diff field_simps) done