diff -r 4005298550a6 -r c8deb8ba6d05 src/HOL/Computational_Algebra/Polynomial.thy --- a/src/HOL/Computational_Algebra/Polynomial.thy Wed Apr 10 13:34:55 2019 +0100 +++ b/src/HOL/Computational_Algebra/Polynomial.thy Wed Apr 10 21:29:32 2019 +0100 @@ -523,7 +523,7 @@ also have "a + x * (\i\degree p. coeff p i * x ^ i) = coeff ?p' 0 * x^0 + (\i\degree p. coeff ?p' (Suc i) * x^Suc i)" by (simp add: field_simps sum_distrib_left coeff_pCons) - also note sum_atMost_Suc_shift[symmetric] + also note sum.atMost_Suc_shift[symmetric] also note degree_pCons_eq[OF \p \ 0\, of a, symmetric] finally show ?thesis . qed @@ -1000,7 +1000,7 @@ next case (pCons a p n) then show ?case - by (cases n) (simp_all add: sum_atMost_Suc_shift del: sum.atMost_Suc) + by (cases n) (simp_all add: sum.atMost_Suc_shift del: sum.atMost_Suc) qed lemma degree_mult_le: "degree (p * q) \ degree p + degree q"